ﻻ يوجد ملخص باللغة العربية
The design and synthesis of targeted functional materials have been a long-term goal for material scientists. Although a universal design strategy is difficult to generate for all types of materials, however, it is still helpful for a typical family of materials to have such design rules. Herein, we incorporated several significant chemical and physical factors regarding magnetism, such as structure type, atom distance, spin-orbit coupling, and successfully synthesized a new rare-earth-free ferromagnet, MnPt5As, for the first time. MnPt5As can be prepared by using high-temperature pellet methods. According to X-ray diffraction results, MnPt5As crystallizes in a tetragonal unit cell with the space group P4/mmm (Pearson symbol tP7). Magnetic measurements on MnPt5As confirm ferromagnetism in this phase with a Curie temperature of ~301 K and a saturated moment of 3.5 uB per formula. Evaluation by applying the Stoner Criterion also indicates that MnPt5As is susceptible to ferromagnetism. Electronic structure calculations using the WIEN2k program with local spin density approximation imply that the spontaneous magnetization of this phase arises primarily from the hybridization of d orbitals on both Mn and Pt atoms. The theoretical assessments are consistent with the experimental results. Moreover, the spin-orbit coupling effects heavily influence on magnetic moments in MnPt5As. MnPt5As is the first high-performance magnetic material in this structure type. The discovery of MnPt5As offers a platform to study the interplay between magnetism and structure.
Crystal-field (CF) effects on the rare-earth (RE) ions in ferrimagnetic intermetallics NdCo$_5$ and TbCo$_5$ are evaluated using an ab initio density functional + dynamical mean-field theory approach in conjunction with a quasi-atomic approximation f
The electronic structures of substitutional rare-earth (RE) impurities in GaAs and cubic GaN are calculated. The total energy is evaluated with the self-interaction corrected local spin density approximation, by which several configurations of the op
Recently the superconductivity has been discovered in the rock-salt structured binary lanthanum monoxide LaO through the state-of-the-art oxide thin-film epitaxy. This work reveals the normal state of superconducting LaO to be a $Z_2$ nontrivial topo
Exploration of rare-earth (RE)-based Kagome lattice magnets with spin-orbital entangled jeff=1/2 moments will provide new platform for investigating the exotic magnetic phases. Here, we report a new family of RE3BWO9 (RE=Pr,Nd,Gd-Ho) boratotungstates
High-quality (001)-oriented (pseudo-cubic notation) ferromagnetic YTiO$_3$ thin films were epitaxially synthesized in a layer-by-layer way by pulsed laser deposition. Structural, magnetic and electronic properties were characterized by reflection-hig