ﻻ يوجد ملخص باللغة العربية
We construct six-dimensional superconformal models with non-abelian tensor and hypermultiplets. They describe the field content of (2,0) theories, coupled to (1,0) vector multiplets. The latter are part of the non-abelian gauge structure that also includes non-dynamical three- and four-forms. The hypermultiplets are described by gauged nonlinear sigma models with a hyper-Kaehler cone target space. We also address the question of constraints in these models and show that their resolution requires the inclusion of abelian factors. These provide couplings that were previously considered for anomaly cancellations with abelian tensor multiplets and resulted in the selection of ADE gauge groups.
Building on the five-dimensional constructions in hep-th/0601177, we provide a unified description of four-dimensional N = 2 superconformal off-shell multiplets in projective superspace, including a realization in terms of N = 1 superfields. In parti
Basis tensor gauge theory is a vierbein analog reformulation of ordinary gauge theories in which the difference of local field degrees of freedom has the interpretation of an object similar to a Wilson line. Here we present a non-Abelian basis tensor
The field theory dual to the Freedman-Townsend model of a non-Abelian anti-symmetric tensor field is a nonlinear sigma model on the group manifold G. This can be extended to the duality between the Freedman-Townsend model coupled to Yang-Mills fields
Within the framework of six-dimensional ${cal N}=(1,0)$ conformal supergravity, we introduce new off-shell multiplets ${cal O}{}^{*}(n)$, where $n=3,4,dots,$ and use them to construct higher-rank extensions of the linear multiplet action. The ${cal O
As a continuation of the study (in arXiv:2102.07696 and arXiv:2104.12625) of strong-coupling expansion of non-planar corrections in $mathcal N=2$ 4d superconformal models we consider two special theories with gauge groups $SU(N)$ and $Sp(2N)$. They c