ﻻ يوجد ملخص باللغة العربية
Basis tensor gauge theory is a vierbein analog reformulation of ordinary gauge theories in which the difference of local field degrees of freedom has the interpretation of an object similar to a Wilson line. Here we present a non-Abelian basis tensor gauge theory formalism. Unlike in the Abelian case, the map between the ordinary gauge field and the basis tensor gauge field is nonlinear. To test the formalism, we compute the beta function and the two-point function at the one-loop level in non-Abelian basis tensor gauge theory and show that it reproduces the well-known results from the usual formulation of non-Abelian gauge theory.
We reformulate gauge theories in analogy with the vierbein formalism of general relativity. More specifically, we reformulate gauge theories such that their gauge dynamical degrees of freedom are local fields that transform linearly under the dual re
Basis tensor gauge theory (BTGT) is a vierbein analog reformulation of ordinary gauge theories in which the vierbein field describes the Wilson line. After a brief review of the BTGT, we clarify the Lorentz group representation properties associated
We present a brief introduction to the construction of gauge theories on noncommutative spaces with star products. Particular emphasis is given to issues related to non-Abelian gauge groups and charge quantization. This talk is based on joined work w
Basis tensor gauge theory (BTGT) is a reformulation of ordinary gauge theory that is an analog of the vierbein formulation of gravity and is related to the Wilson line formulation. To match ordinary gauge theories coupled to matter, the BTGT formalis
We study at the classical and quantum mechanical level the time-dependent Yang-Mills theory that one obtains via the generalisation of discrete light-cone quantisation to singular homogeneous plane waves. The non-Abelian nature of this theory is know