ﻻ يوجد ملخص باللغة العربية
Building on the five-dimensional constructions in hep-th/0601177, we provide a unified description of four-dimensional N = 2 superconformal off-shell multiplets in projective superspace, including a realization in terms of N = 1 superfields. In particular, superconformal polar multiplets are consistently defined for the first time. We present new 4D N = 2 superconformal sigma-models described by polar multiplets. Such sigma-models realize general superconformal couplings in projective superspace, but involve an infinite tale of auxiliary N = 1 superfields. The auxiliaries should be eliminated by solving infinitely many algebraic nonlinear equations, and this is a nontrivial technical problem. We argue that the latter can be avoided by making use of supersymmetry considerations. All information about the resulting superconformal model (and hence the associated superconformal cone) is encoded in the so-called canonical coordinate system for a Kaehler metric, which was introduced by Bochner and Calabi in the late 1940s.
We construct six-dimensional superconformal models with non-abelian tensor and hypermultiplets. They describe the field content of (2,0) theories, coupled to (1,0) vector multiplets. The latter are part of the non-abelian gauge structure that also in
As a continuation of the study (in arXiv:2102.07696 and arXiv:2104.12625) of strong-coupling expansion of non-planar corrections in $mathcal N=2$ 4d superconformal models we consider two special theories with gauge groups $SU(N)$ and $Sp(2N)$. They c
In these lectures, we give a pedagogical introduction to the superconformal index. This is the writeup of the lectures given at the Winter School YRISW 2020 and is to appear in a special issue of JPhysA. The lectures are at a basic level and are gear
We compute $tau_{RR}$ minimization in gauged supergravity for M-theory and String Theory truncations with both massless and massive vector multiplets. We explicitly compute, as anticipated in cite{Amariti:2015ybz}, that massive vector fields at the v
We constrain the spectrum of $mathcal{N}=(1, 1)$ and $mathcal{N}=(2, 2)$ superconformal field theories in two-dimensions by requiring the NS-NS sector partition function to be invariant under the $Gamma_theta$ congruence subgroup of the full modular