ترغب بنشر مسار تعليمي؟ اضغط هنا

MOSE: zooming on the Meso-NH mesoscale model performances at the surface layer at ESO sites (Paranal and Armazones)

106   0   0.0 ( 0 )
 نشر من قبل Franck Lascaux
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In the context of the MOSE project, in this contribution we present a detailed analysis of the Meso-NH mesoscale model performances and their dependency on the model and orography horizontal resolutions in proximity of the ground. The investigated sites are Cerro Paranal (site of the ESO Very Large Telescope - VLT) and Cerro Armazones (site of the ESO European Extremely Large Telescope - E-ELT), in Chile. At both sites, data from a rich statistical sample of different nights are available - from AWS (Automated Weather Stations) and masts - giving access to wind speed, wind direction and temperature at different levels near the ground (from 2 m to 30 m above the ground). In this study we discuss the use of a very high horizontal resolution (dX=0.1 km) numerical configuration that overcomes some specific limitations put in evidence with a standard configuration with dX=0.5 km. In both sites results are very promising. The study is co-funded by ESO and INAF.



قيم البحث

اقرأ أيضاً

This article aims at proving the feasibility of the forecast of all the most relevant classical atmospherical parameters for astronomical applications (wind speed and direction, temperature) above the ESO ground-base site of Cerro Paranal with a meso scale atmospherical model called Meso-Nh. In a precedent paper we have preliminarily treated the model performances obtained in reconstructing some key atmospherical parameters in the surface layer 0-30~m studying the bias and the RMSE on a statistical sample of 20 nights. Results were very encouraging and it appeared therefore mandatory to confirm such a good result on a much richer statistical sample. In this paper, the study was extended to a total sample of 129 nights between 2007 and 2011 distributed in different parts of the solar year. This large sample made our analysis more robust and definitive in terms of the model performances and permitted us to confirm the excellent performances of the model. Besides, we present an independent analysis of the model performances using the method of the contingency tables. Such a method permitted us to provide complementary key informations with respect to the bias and the RMSE particularly useful for an operational implementation of a forecast system.
This article is the second of a series of articles aiming at proving the feasibility of the forecast of all the most relevant classical atmospherical parameters for astronomical applications (wind speed and direction, temperature, relative humidity) and the optical turbulence (Cn2 and the derived astro-climatic parameters like seeing, isoplanatic angle, wavefront coherence time...). This study is done in the framework of the MOSE project, and focused above the two ESO ground-bases sites of Cerro Paranal and Cerro Armazones. In this paper we present the results related to the Meso-Nh model ability in reconstructing the surface layer atmospherical parameters (wind speed intensity, wind direction and absolute temperature, [0-30] m a.g.l.). The model reconstruction of all the atmospherical parameters in the surface layer is very satisfactory. For the temperature, at all levels, the RMSE (Root Mean Square Error) is inferior to 1{deg}C. For the wind speed, it is ~2 m/s, and for the wind direction, it is in the range [38-46{deg}], at all levels, that corresponds to a RMSE_relative in a range [21-26{deg}]. If a filter is applied for the wind direction (the winds inferior to 3 m/s are discarded from the computations), the wind direction RMSE is in the range [30-41{deg}], i.e. a RMSE_relative in the range [17-23{deg}]. The model operational forecast of the surface layer atmospherical parameters is suitable for different applications, among others: thermalization of the dome using the reconstructed temperature, hours in advance, of the beginning the night; knowing in advance the main direction which the strong winds will come from during the night could allow the astronomer to anticipate the occurrence of a good/bad seeing night, and plan the observations accordingly; preventing adaptive secondary mirrors shake generated by the wind speed.
We present the overview of the MOSE project (MOdeling ESO Sites) aiming at proving the feasibility of the forecast of the classical atmospherical parameters (wind speed intensity and direction, temperature, relative humidity) and the optical turbulen ce OT (CN2 profiles and the most relevant integrated astro-climatic parameters derived from the CN2: the seeing, the isoplanatic angle, the wavefront coherence time) above the two ESO ground-based sites of Cerro Paranal and Cerro Armazones. The final outcome of the study is to investigate the opportunity to implement an automatic system for the forecast of these parameters at these sites. In this paper we present results related to the Meso-Nh model ability in reconstructing the vertical stratification of the atmospherical parameters along the 20 km above the ground. The very satisfactory performances shown by the model in reconstructing most of these parameters (and in particular the wind speed) put this tool of investigation as the most suitable to be used in astronomical observatories to support AO facilities and to calculate the temporal evolution of the wind speed and the wavefront coherence time at whatever temporal sampling. The further great advantage of this solution is that such estimates can be available in advance (order of some hours) with respect to the time of interest
At Paranal Observatory, the least predictable parameter affecting the short-term scheduling of astronomical observations is the optical turbulence, especially the seeing, coherence time and ground layer fraction. These are critical variables driving the performance of the instruments of the Very Large Telescope (VLT), especially those fed with adaptive optics systems. Currently, the night astronomer does not have a predictive tool to support him/her in decision-making at night. As most service-mode observations at the VLT last less than two hours, it is critical to be able to predict what will happen in this time frame, to avoid time losses due to sudden changes in the turbulence conditions, and also to enable more aggressive scheduling. We therefore investigate here the possibility to forecast the turbulence conditions over the next two hours. We call this turbulence nowcasting, analogously with weather nowcasting, a term already used in meteorology coming from the contraction of now and forecasting. We present here the results of a study based on historical data of the Paranal Astronomical Site Monitoring combined with ancillary data, in a machine learning framework. We show the strengths and shortcomings of such an approach, and present some perspectives in the context of the Extremely Large Telescope.
In a recent paper the authors presented an extended study aiming at simulating the classical meteorological parameters and the optical turbulence at Dome C during the winter with the atmospherical mesoscale model Meso-NH. A statistical analysis has b een presented and the conclusions of that paper have been very promising. Wind speed and temperature fields revealed to be very well reconstructed by the Meso-NH model with better performances than what has been achieved with the European Centre for Medium-Range Weather Forecast (ECMWF) global model, especially near the surface. All results revealed to be resolution-dependent and it has been proved that a grid-nesting configuration (3 domains) with a high horizontal resolution (1km) for the innermost domain is necessary to reconstruct all the optical turbulence features with a good correlation to measurements. High resolution simulations provided an averaged surface layer thickness just ~14 m higher than what is estimated by measurements, the seeing in the free atmosphere showed a dispersion from the observed one of just a few hundredths of an arcsecond (~0.05). The unique limitation of the previous study was that the optical turbulence in the surface layer appeared overestimated by the model in both low and high resolution modes. In this study we present the results obtained with an improved numerical configuration. The same 15 nights have been simulated, and we show that the model results now match almost perfectly the observations in all their features: the surface thickness, the seeing in the free atmosphere as well as in the surface layer. This result permits us to investigate now other antarctic sites using a robust numerical model well adapted to the extreme polar conditions (Meso-NH).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا