ﻻ يوجد ملخص باللغة العربية
This article aims at proving the feasibility of the forecast of all the most relevant classical atmospherical parameters for astronomical applications (wind speed and direction, temperature) above the ESO ground-base site of Cerro Paranal with a mesoscale atmospherical model called Meso-Nh. In a precedent paper we have preliminarily treated the model performances obtained in reconstructing some key atmospherical parameters in the surface layer 0-30~m studying the bias and the RMSE on a statistical sample of 20 nights. Results were very encouraging and it appeared therefore mandatory to confirm such a good result on a much richer statistical sample. In this paper, the study was extended to a total sample of 129 nights between 2007 and 2011 distributed in different parts of the solar year. This large sample made our analysis more robust and definitive in terms of the model performances and permitted us to confirm the excellent performances of the model. Besides, we present an independent analysis of the model performances using the method of the contingency tables. Such a method permitted us to provide complementary key informations with respect to the bias and the RMSE particularly useful for an operational implementation of a forecast system.
This article is the second of a series of articles aiming at proving the feasibility of the forecast of all the most relevant classical atmospherical parameters for astronomical applications (wind speed and direction, temperature, relative humidity)
In the context of the MOSE project, in this contribution we present a detailed analysis of the Meso-NH mesoscale model performances and their dependency on the model and orography horizontal resolutions in proximity of the ground. The investigated si
We present the overview of the MOSE project (MOdeling ESO Sites) aiming at proving the feasibility of the forecast of the classical atmospherical parameters (wind speed intensity and direction, temperature, relative humidity) and the optical turbulen
The Earths atmosphere affects ground-based astronomical observations. Scattering, absorption, and radiation processes deteriorate the signal-to-noise ratio of the data received. For scheduling astronomical observations it is, therefore, important to
In addition to astro-meteorological parameters, such as seeing, coherence time and isoplanatic angle, the vertical profile of the Earths atmospheric turbulence strength and velocity is important for instrument design, performance validation and monit