ترغب بنشر مسار تعليمي؟ اضغط هنا

Mesoscale optical turbulence simulations at Dome C: refinements

141   0   0.0 ( 0 )
 نشر من قبل Franck Lascaux
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In a recent paper the authors presented an extended study aiming at simulating the classical meteorological parameters and the optical turbulence at Dome C during the winter with the atmospherical mesoscale model Meso-NH. A statistical analysis has been presented and the conclusions of that paper have been very promising. Wind speed and temperature fields revealed to be very well reconstructed by the Meso-NH model with better performances than what has been achieved with the European Centre for Medium-Range Weather Forecast (ECMWF) global model, especially near the surface. All results revealed to be resolution-dependent and it has been proved that a grid-nesting configuration (3 domains) with a high horizontal resolution (1km) for the innermost domain is necessary to reconstruct all the optical turbulence features with a good correlation to measurements. High resolution simulations provided an averaged surface layer thickness just ~14 m higher than what is estimated by measurements, the seeing in the free atmosphere showed a dispersion from the observed one of just a few hundredths of an arcsecond (~0.05). The unique limitation of the previous study was that the optical turbulence in the surface layer appeared overestimated by the model in both low and high resolution modes. In this study we present the results obtained with an improved numerical configuration. The same 15 nights have been simulated, and we show that the model results now match almost perfectly the observations in all their features: the surface thickness, the seeing in the free atmosphere as well as in the surface layer. This result permits us to investigate now other antarctic sites using a robust numerical model well adapted to the extreme polar conditions (Meso-NH).



قيم البحث

اقرأ أيضاً

In two recent papers the mesoscale model Meso-NH, joint with the Astro-Meso-NH package, has been validated at Dome C, Antarctica, for the characterization of the optical turbulence. It has been shown that the meteorological parameters (temperature an d wind speed, from which the optical turbulence depends on) as well as the Cn2 profiles above Dome C were correctly statistically reproduced. The three most important derived parameters that characterize the optical turbulence above the internal antarctic plateau: the surface layer thickness, the seeing in the free-atmosphere and in the total atmosphere showed to be in a very good agreement with observations. Validation of Cn2 has been performed using all the measurements of the optical turbulence vertical distribution obtained in winter so far. In this paper, in order to investigate the ability of the model to discriminate between different turbulence conditions for site testing, we extend the study to two other potential astronomical sites in Antarctica: Dome A and South Pole, which we expect to be characterized by different turbulence conditions. The optical turbulence has been calculated above these two sites for the same 15 nights studied for Dome C and a comparison between the three sites has been performed.
The optical turbulence above Dome C in winter is mainly concentrated in the first tens of meters above the ground. Properties of this so-called surface layer (SL) were investigated during the period 2007-2012 by a set of sonics anemometers placed on a 45 m high tower. We present the results of this long-term monitoring of the refractive index structure constant Cn2 within the SL, and confirm its thickness of 35m. We give statistics of the contribution of the SL to the seeing and coherence time. We also investigate properties of large scale structure functions of the temperature and show evidence of a second inertial zone at kilometric spatial scales.
We present long term site testing statistics obtained at Dome C, Antarctica with various experiments deployed within the Astroconcordia programme since 2003. We give values of integrated turbulence parameters in the visible at ground level and above the surface layer, vertical profiles of the structure constant Cn2 and a statistics of the thickness of the turbulent surface layer.
In this contribution I present results achieved recently in the field of the OT forecast that push further the limit of the accuracy of the OT forecasts and open to new perspectives in this field.
A characterization of the optical turbulence vertical distribution and all the main integrated astroclimatic parameters derived from the CN2 and the wind speed profiles above Mt. Graham is presented. The statistic includes measurements related to 43 nights done with a Generalized Scidar (GS) used in standard configuration with a vertical resolution of ~1 km on the whole 20-22 km and with the new technique (HVR-GS) in the first kilometer. The latter achieves a resolution of ~ 20-30 m in this region of the atmosphere. Measurements done in different periods of the year permit us to provide a seasonal variation analysis of the CN2. A discretized distribution of the typical CN2 profiles useful for the Ground Layer Adaptive Optics (GLAO) simulations is provided and a specific analysis for the LBT Laser Guide Star system ARGOS case is done including the calculation of the gray zones for J, H and K bands. Mt. Graham confirms to be an excellent site with median values of the seeing without dome contribution equal to 0.72, the isoplanatic angle equal to 2.5 and the wavefront coherence time equal to 4.8 msec. We provide a cumulative distribution of the percentage of turbulence developed below H* where H* is included in the (0,1 km) range. We find that 50% of the whole turbulence develops in the first 80 m from the ground. The turbulence decreasing rate is very similar to what has been observed above Mauna Kea.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا