ترغب بنشر مسار تعليمي؟ اضغط هنا

Two Power-Law States of the Ultraluminous X-ray Source IC342 X-1

109   0   0.0 ( 0 )
 نشر من قبل Tessei Yoshida
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In order to elucidate the emission properties of ultraluminous X-ray sources (ULXs) during their power-law (PL) state, we examined long-term X-ray spectral data of IC342 X-1 during its PL state by using our own Suzaku data and the archival data by XMM-Newton, Chandra, and Swift observations. The PL state of this source seems to be classified into two sub-states in terms of the X-ray luminosities in 0.5-10 keV: the low luminosity PL state with 4-6*10^{39} erg/s and the high luminosity one with 1.1-1.4*10^{40} erg/s. During the Suzaku observations which were made in 2010 August and 2011 March, X-1 stayed in the low luminosity PL state. The observed X-ray luminosity (4.9-5.6*10^{39} erg/s) and the spectral shape (photon index = 1.67-1.83) slightly changed between the two observations. Using the Suzaku PIN detector, we for the first time confirmed a PL tail extending up to at least 20 keV with no signatures of a high-energy turnover in both of the Suzaku observations. In contrast, a turnover at about 6 keV was observed during the high luminosity PL state in 2004 and 2005 with XMM-Newton. Importantly, photon indices are similar between the two PL states and so is the Compton y-parameters of y ~ 1, which indicates a similar energy balance (between the corona and the accretion disk) holding in the two PL states despite different electron temperatures. From spectral similarities with recent studies about other ULXs and the Galactic black hole binary GRS1915+105, IC342 X-1 is also likely to be in a state with a supercritical accretion rate, although more sensitive higher energy observations would be necessary to conclude.



قيم البحث

اقرأ أيضاً

We use XMM-Newton and Swift data to study spectral variability in the ultraluminous X-ray source (ULX), Holmberg IX X-1. The source luminosity varies by a factor 3-4, giving rise to corresponding spectral changes which are significant, but subtle, an d not well tracked by a simple hardness ratio. Instead, we co-add the Swift data in intensity bins and do full spectral fitting with disc plus thermal Comptonisation models. All the data are well-fitted by a low temperature, optically thick Comptonising corona, and the variability can be roughly characterised by decreasing temperature and increasing optical depth as the source becomes brighter, as expected if the corona is becoming progressively mass loaded by material blown off the super-Eddington inner disc. This variability behaviour is seen in other ULX which have similar spectra, but is opposite to the trend seen in ULX with much softer spectra. This supports the idea that there are two distinct physical regimes in ULXs, where the spectra go from being dominated by a disc-corona to being dominated by a wind.
107 - E. Kara , C. Pinto , D.J. Walton 2019
Ultraluminous X-ray Sources (ULXs) provide a unique opportunities to probe the geometry and energetics of super-Eddington accretion. The radiative processes involved in super-Eddington accretion are not well understood, and so studying correlated var iability between different energy bands can provide insights into the causal connection between different emitting regions. We present a spectral-timing analysis of NGC 1313 X-1 from a recent XMM-Newton campaign. The spectra can be decomposed into two thermal-like components, the hotter of which may originate from the inner accretion disc, and the cooler from an optically thick outflow. We find correlated variability between hard (2-10 keV) and soft (0.3-2 keV) bands on kilosecond timescales, and find a soft lag of ~150 seconds. The covariance spectrum suggests that emission contributing to the lags is largely associated with the hotter of the two thermal-like components, likely originating from the inner accretion flow. This is only the third ULX to exhibit soft lags. The lags range over three orders of magnitude in amplitude, but all three are ~5 to ~20 percent of the corresponding characteristic variability timescales. If these soft lags can be understood in the context of a unified picture of ULXs, then lag timescales may provide constraints on the density and extent of radiatively-driven outflows.
83 - W. Luangtip 2021
Majority of ultraluminous X-ray sources (ULXs) are believed to be super-Eddington objects, providing a nearby prototype for studying an accretion in super-critical regime. In this work, we present the study of time-lag spectra of the ULX NGC 5408 X-1 using a reverberation mapping technique. The time-lag data were binned using two different methods: time averaged-based and luminosity-based spectral bins. These spectra were fitted using two proposed geometric models: single and multiple photon scattering models. While both models similarly assume that a fraction of hard photons emitted from inner accretion disc could be down-scattered with the super-Eddington outflowing wind becoming lagged, soft photons, they are different by the number that the hard photons scattering with the wind: i.e. single vs multiple times. In case of averaged spectrum, both models consistently constrained the mass of ULX in the range of $sim$80-500 M$_{rm odot}$. However, for the modelling results from the luminosity based spectra, the confidence interval of the BH mass is significantly improved and is constrained to the range of $sim$75-90 M$_{rm odot}$. In addition, the models suggest that the wind geometry is extended in which the photons could down-scatter with the wind at the distance of $sim$10$^{4}$ - 10$^{6}$ $r_{rm g}$. The results also suggest the variability of the lag spectra as a function of ULX luminosity, but the clear trend of changing accretion disc geometry with the spectral variability is not observed.
Studies of X-ray continuum emission and flux variability have not conclusively revealed the nature of ultra-luminous X-ray sources (ULXs) at the high-luminosity end of the distribution (those with Lx > 1e40 erg/s). These are of particular interest be cause the luminosity requires either super-Eddington accretion onto a black hole of mass ~10 Msun, or more standard accretion onto an intermediate-mass black hole. Super-Eddington accretion models predict strong outflowing winds, making atomic absorption lines a key diagnostic of the nature of extreme ULXs. To search for such features, we have undertaken a long, 500 ks observing campaign on Holmberg IX X-1 with Suzaku. This is the most sensitive dataset in the iron K bandpass for a bright, isolated ULX to date, yet we find no statistically significant atomic features in either emission or absorption; any undetected narrow features must have equivalent widths less than 15-20 eV at 99% confidence. These limits are far below the >150 eV lines expected if observed trends between mass inflow and outflow rates extend into the super-Eddington regime, and in fact rule out the line strengths observed from disk winds in a variety of sub-Eddington black holes. We therefore cannot be viewing the central regions of Holmberg IX X-1 through any substantial column of material, ruling out models of spherical super-Eddington accretion. If Holmberg IX X-1 is a super-Eddington source, any associated outflow must have an anisotropic geometry. Finally, the lack of iron emission suggests that the stellar companion cannot be launching a strong wind, and that Holmberg IX X-1 must primarily accrete via roche-lobe overflow.
We present C and X-band radio observations of the famous utraluminous X-ray source (ULX) Holmberg IX X-1, previously discovered to be associated with an optical emission line nebula several hundred pc in extent. Our recent infrared study of the ULX s uggested that a jet could be responsible for the infrared excess detected at the ULX position. The new radio observations, performed using the Karl G. Jansky Very Large Array (VLA) in B-configuration, reveal the presence of a radio counterpart to the nebula with a spectral slope of -0.56 similar to other ULXs. Importantly, we find no evidence for an unresolved radio source associated with the ULX itself, and we set an upper limit on any 5 GHz radio core emission of 6.6 $mu$Jy ($4.1times10^{32}$ erg s$^{-1}$). This is 20 times fainter than what we expect if the bubble is energized by a jet. If a jet exists its core component is unlikely to be responsible for the infrared excess unless it is variable. Strong winds which are expected in super-Eddington sources could also play an important role in inflating the radio bubble. We discuss possible interpretations of the radio/optical bubble and we prefer the jet+winds-blown bubble scenario similar to the microquasar SS 433.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا