ﻻ يوجد ملخص باللغة العربية
Majority of ultraluminous X-ray sources (ULXs) are believed to be super-Eddington objects, providing a nearby prototype for studying an accretion in super-critical regime. In this work, we present the study of time-lag spectra of the ULX NGC 5408 X-1 using a reverberation mapping technique. The time-lag data were binned using two different methods: time averaged-based and luminosity-based spectral bins. These spectra were fitted using two proposed geometric models: single and multiple photon scattering models. While both models similarly assume that a fraction of hard photons emitted from inner accretion disc could be down-scattered with the super-Eddington outflowing wind becoming lagged, soft photons, they are different by the number that the hard photons scattering with the wind: i.e. single vs multiple times. In case of averaged spectrum, both models consistently constrained the mass of ULX in the range of $sim$80-500 M$_{rm odot}$. However, for the modelling results from the luminosity based spectra, the confidence interval of the BH mass is significantly improved and is constrained to the range of $sim$75-90 M$_{rm odot}$. In addition, the models suggest that the wind geometry is extended in which the photons could down-scatter with the wind at the distance of $sim$10$^{4}$ - 10$^{6}$ $r_{rm g}$. The results also suggest the variability of the lag spectra as a function of ULX luminosity, but the clear trend of changing accretion disc geometry with the spectral variability is not observed.
Ultra-Luminous X-ray sources are accreting black holes that might represent strong evidence of the Intermediate Mass Black Holes (IMBH), proposed to exist by theoretical studies but with no firm detection (as a class) so far. We analyze the best X-ra
Ultraluminous X-ray Sources (ULXs) provide a unique opportunities to probe the geometry and energetics of super-Eddington accretion. The radiative processes involved in super-Eddington accretion are not well understood, and so studying correlated var
Most ultraluminous X-ray sources (ULXs) are thought to be powered by neutron stars and black holes accreting beyond the Eddington limit. If the compact object is a black hole or a neutron star with a magnetic field $lesssim10^{12}$ G, the accretion d
We use XMM-Newton and Swift data to study spectral variability in the ultraluminous X-ray source (ULX), Holmberg IX X-1. The source luminosity varies by a factor 3-4, giving rise to corresponding spectral changes which are significant, but subtle, an
Using simultaneous optical (VLT/FORS2) and X-ray (XMM-Newton) data of NGC 5408, we present the first ever attempt to search for a reverberation signal in an ultraluminous X-ray source (NGC 5408 X-1). The idea is similar to AGN broad line reverberatio