ترغب بنشر مسار تعليمي؟ اضغط هنا

Discovery of a soft X-ray lag in the Ultraluminous X-ray Source NGC 1313 X-1

108   0   0.0 ( 0 )
 نشر من قبل Erin Kara
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Ultraluminous X-ray Sources (ULXs) provide a unique opportunities to probe the geometry and energetics of super-Eddington accretion. The radiative processes involved in super-Eddington accretion are not well understood, and so studying correlated variability between different energy bands can provide insights into the causal connection between different emitting regions. We present a spectral-timing analysis of NGC 1313 X-1 from a recent XMM-Newton campaign. The spectra can be decomposed into two thermal-like components, the hotter of which may originate from the inner accretion disc, and the cooler from an optically thick outflow. We find correlated variability between hard (2-10 keV) and soft (0.3-2 keV) bands on kilosecond timescales, and find a soft lag of ~150 seconds. The covariance spectrum suggests that emission contributing to the lags is largely associated with the hotter of the two thermal-like components, likely originating from the inner accretion flow. This is only the third ULX to exhibit soft lags. The lags range over three orders of magnitude in amplitude, but all three are ~5 to ~20 percent of the corresponding characteristic variability timescales. If these soft lags can be understood in the context of a unified picture of ULXs, then lag timescales may provide constraints on the density and extent of radiatively-driven outflows.



قيم البحث

اقرأ أيضاً

We report the detection of weak pulsations from the archetypal ultraluminous X-ray source (ULX) NGC 1313 X-2. Acceleration searches reveal sinusoidal pulsations in segments of two out of six new deep observations of this object, with a period of $sim $ 1.5 s and a pulsed fraction of $sim$ 5%. We use Monte Carlo simulations to demonstrate that the individual detections are unlikely to originate in false Poisson noise detections given their very close frequencies; their strong similarity to other pulsations detected from ULXs also argues they are real. The presence of a large bubble nebula surrounding NGC 1313 X-2 implies an age of order 1 Myr for the accreting phase of the ULX, which implies that the neutron stars magnetic field has not been suppressed over time by accreted material, nor has the neutron star collapsed into a black hole, despite an average energy output into the nebula two orders of magnitude above Eddington. This argues that most of the accreted material has been expelled over the lifetime of the ULX, favouring physical models including strong winds and/or jets for neutron star ULXs.
367 - C. Pinto , D. J. Walton , E. Kara 2019
Most ultraluminous X-ray sources (ULXs) are thought to be powered by neutron stars and black holes accreting beyond the Eddington limit. If the compact object is a black hole or a neutron star with a magnetic field $lesssim10^{12}$ G, the accretion d isc is expected to thicken and launch powerful winds driven by radiation pressure. Evidence of such winds has been found in ULXs through the high-resolution spectrometers onboard XMM-Newton, but several unknowns remain, such as the geometry and launching mechanism of these winds. In order to better understand ULX winds and their link to the accretion regime, we have undertaken a major campaign with XMM-Newton to study the ULX NGC 1313 X-1, which is known to exhibit strong emission and absorption features from a mildly-relativistic wind. The new observations show clear changes in the wind with a significantly weakened fast component (0.2c) and the rise of a new wind phase which is cooler and slower (0.06-0.08c). We also detect for the first time variability in the emission lines which indicates an origin within the accretion disc or in the wind. We describe the variability of the wind in the framework of variable super-Eddington accretion rate and discuss a possible geometry for the accretion disc.
We analyzed the longest phase-connected photometric dataset available for NGC 1313 X-2, looking for the ~6 day modulation reported by Liu et al. (2009). The folded B band light curve shows a 6 day periodicity with a significance slightly larger than 3 sigma. The low statistical significance of this modulation, along with the lack of detection in the V band, make its identification uncertain.
83 - W. Luangtip 2021
Majority of ultraluminous X-ray sources (ULXs) are believed to be super-Eddington objects, providing a nearby prototype for studying an accretion in super-critical regime. In this work, we present the study of time-lag spectra of the ULX NGC 5408 X-1 using a reverberation mapping technique. The time-lag data were binned using two different methods: time averaged-based and luminosity-based spectral bins. These spectra were fitted using two proposed geometric models: single and multiple photon scattering models. While both models similarly assume that a fraction of hard photons emitted from inner accretion disc could be down-scattered with the super-Eddington outflowing wind becoming lagged, soft photons, they are different by the number that the hard photons scattering with the wind: i.e. single vs multiple times. In case of averaged spectrum, both models consistently constrained the mass of ULX in the range of $sim$80-500 M$_{rm odot}$. However, for the modelling results from the luminosity based spectra, the confidence interval of the BH mass is significantly improved and is constrained to the range of $sim$75-90 M$_{rm odot}$. In addition, the models suggest that the wind geometry is extended in which the photons could down-scatter with the wind at the distance of $sim$10$^{4}$ - 10$^{6}$ $r_{rm g}$. The results also suggest the variability of the lag spectra as a function of ULX luminosity, but the clear trend of changing accretion disc geometry with the spectral variability is not observed.
We use XMM-Newton and Swift data to study spectral variability in the ultraluminous X-ray source (ULX), Holmberg IX X-1. The source luminosity varies by a factor 3-4, giving rise to corresponding spectral changes which are significant, but subtle, an d not well tracked by a simple hardness ratio. Instead, we co-add the Swift data in intensity bins and do full spectral fitting with disc plus thermal Comptonisation models. All the data are well-fitted by a low temperature, optically thick Comptonising corona, and the variability can be roughly characterised by decreasing temperature and increasing optical depth as the source becomes brighter, as expected if the corona is becoming progressively mass loaded by material blown off the super-Eddington inner disc. This variability behaviour is seen in other ULX which have similar spectra, but is opposite to the trend seen in ULX with much softer spectra. This supports the idea that there are two distinct physical regimes in ULXs, where the spectra go from being dominated by a disc-corona to being dominated by a wind.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا