ترغب بنشر مسار تعليمي؟ اضغط هنا

Baryons Matter: Why Luminous Satellite Galaxies Have Reduced Central Masses

161   0   0.0 ( 0 )
 نشر من قبل Adi Zolotov
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Using high resolution cosmological hydrodynamical simulations of Milky Way-massed disk galaxies, we demonstrate that supernovae feedback and tidal stripping lower the central masses of bright (-15 < M_V < -8) satellite galaxies. These simulations resolve high density regions, comparable to giant molecular clouds, where stars form. This resolution allows us to adopt a prescription for H_2 formation and destruction that ties star formation to the presence of shielded, molecular gas. Before infall, supernova feedback from the clumpy, bursty star formation captured by this physically motivated model leads to reduced dark matter (DM) densities and shallower inner density profiles in the massive satellite progenitors (Mvir > 10^9 Msun, Mstar > 10^7 Msun) compared to DM-only simulations. The progenitors of the lower mass satellites are unable to maintain bursty star formation histories, due to both heating at reionization and gas loss from initial star forming events, preserving the steep inner density profile predicted by DM-only simulations. After infall, tidal stripping acts to further reduce the central densities of the luminous satellites, particularly those that enter with cored dark matter halos, increasing the discrepancy in the central masses predicted by baryon+DM and DM-only simulations. We show that DM-only simulations, which neglect the baryonic effects described in this work, produce denser satellites with larger central velocities. We provide a simple correction to the central DM mass predicted for satellites by DM-only simulations. We conclude that DM-only simulations should be used with great caution when interpreting kinematic observations of the Milky Ways dwarf satellites.



قيم البحث

اقرأ أيضاً

572 - Shogo Masaki 2012
We develop a novel abundance matching method to construct a mock catalog of luminous red galaxies (LRGs) in SDSS, using catalogs of halos and subhalos in N-body simulations for a LCDM model. Motivated by observations suggesting that LRGs are passivel y-evolving, massive early-type galaxies with a typical age >5Gyr, we assume that simulated halos at z=2 (z2-halo) are progenitors for LRG-host subhalos observed today, and we label the most tightly bound particles in each progenitor z2-halo as LRG ``stars. We then identify the subhalos containing these stars to z=0.3 (SDSS redshift) in descending order of the masses of z2-halos until the comoving number density of the matched subhalos becomes comparable to the measured number density of SDSS LRGs, n=10^{-4} (h/Mpc)^3. Once the above prescription is determined, our only free parameter is the number density of halos identified at z=2 and this parameter is fixed to match the observed number density at z = 0.3. By tracing subsequent merging and assembly histories of each progenitor z2-halo, we can directly compute, from the mock catalog, the distributions of central and satellite LRGs and their internal motions in each host halo at z=0.3. While the SDSS LRGs are galaxies selected by the magnitude and color cuts from the SDSS images and are not necessarily a stellar-mass-selected sample, our mock catalog reproduces a host of SDSS measurements: the halo occupation distribution for central and satellite LRGs, the projected auto-correlation function of LRGs, the cross-correlation of LRGs with shapes of background galaxies (LRG-galaxy weak lensing), and the nonlinear redshift-space distortion effect, the Finger-of-God effect, in the angle-averaged redshift-space power spectrum.
We study the projected radial distribution of satellite galaxies around more than 28,000 Luminous Red Galaxies (LRGs) at 0.28<z<0.40 and trace the gravitational potential of LRG groups in the range 15<r/kpc<700. We show that at large radii the satell ite number density profile is well fitted by a projected NFW profile with r_s~270 kpc and that at small radii this model underestimates the number of satellite galaxies. Utilizing the previously measured stellar light distribution of LRGs from deep imaging stacks we demonstrate that this small scale excess is consistent with a non-negligible baryonic mass contribution to the gravitational potential of massive groups and clusters. The combined NFW+scaled stellar profile provides an excellent fit to the satellite number density profile all the way from 15 kpc to 700 kpc. Dark matter dominates the total mass profile of LRG halos at r>25 kpc whereas baryons account for more than 50% of the mass at smaller radii. We calculate the total dark-to-baryonic mass ratio and show that it is consistent with measurements from weak lensing for environments dominated by massive early type galaxies. Finally, we divide the satellite galaxies in our sample into three luminosity bins and show that the satellite light profiles of all brightness levels are consistent with each other outside of roughly 25 kpc. At smaller radii we find evidence for a mild mass segregation with an increasing fraction of bright satellites close to the central LRG.
We perform an exhaustive comparison among central galaxies from SDSS catalogs in different local environments at 0.01<=z<=0.08. The central galaxies are separated into two categories: group centrals (host halos containing satellites) and field centra ls (host halos without satellites). From the latter, we select other two subsamples: isolated centrals and bright field centrals, both with the same magnitude limit. The stellar mass (Ms) distributions of the field and group central galaxies are different, which explains why in general the field central galaxies are mainly located in the blue cloud/star forming regions, whereas the group central galaxies are strongly biased to the red sequence/passive regions. The isolated centrals occupy the same regions as the bright field centrals since both populations have similar Ms distributions. At parity of Ms, the color and specific star formation rate (sSFR) distributions of the samples are similar, specially between field and group centrals. Furthermore, we find that the stellar-to-halo mass (Ms-Mh) relation of isolated galaxies does not depend on the color, sSFR and morphological type. For systems without satellites, the Ms-Mh relation steepens at high halo masses compared to group centrals, which is a consequence of assuming a one-to-one relation between group total stellar mass and halo mass. Under the same assumption, the scatter around the Ms-Mh relation of centrals with satellites increases with halo mass. Our results suggest that the mass growth of central galaxies is mostly driven by the halo mass, with environment and mergers playing a secondary role.
141 - Douglas F. Watson 2013
Satellite galaxies in rich clusters are subject to numerous physical processes that can significantly influence their evolution. However, the typical L* satellite galaxy resides in much lower mass galaxy groups, where the processes capable of alterin g their evolution are generally weaker and have had less time to operate. To investigate the extent to which satellite and central galaxy evolution differs, we separately model the stellar mass - halo mass (M* -Mh) relation for these two populations over the redshift interval 0 < z < 1. This relation for central galaxies is constrained by the galaxy stellar mass function while the relation for satellite galaxies is constrained against recent measurements of the galaxy two-point correlation function (2PCF). At z ~ 0 the satellites, on average, have ~10% larger stellar masses at fixed peak subhalo mass compared to central galaxies of the same halo mass. This is required in order to reproduce the observed stellar mass-dependent 2PCF and satellite fractions. At low masses our model slightly under-predicts the correlation function at ~1 Mpc scales. At z ~ 1 the satellite and central galaxy M*-Mh relations are consistent within the errors, and the model provides an excellent fit to the clustering data. At present, the errors on the clustering data at z ~ 2 are too large to constrain the satellite model. A simple model in which satellite and central galaxies share the same M*-Mh relation is able to reproduce the extant z ~ 2 clustering data. We speculate that the striking similarity between the satellite and central galaxy M*-Mh relations since z ~ 2 arises because the central galaxy relation evolves very weakly with time and because the stellar mass of the typical satellite galaxy has not changed significantly since it was accreted. [Abridged]
In the standard model of non-linear structure formation, a cosmic web of dark-matter dominated filaments connects dark matter halos. In this paper, we stack the weak lensing signal of an ensemble of filaments between groups and clusters of galaxies. Specifically, we detect the weak lensing signal, using CFHTLenS galaxy ellipticities, from stacked filaments between SDSS-III/BOSS luminous red galaxies (LRGs). As a control, we compare the physical LRG pairs with projected LRG pairs that are more widely separated in redshift space. We detect the excess filament mass density in the projected pairs at the $5sigma$ level, finding a mass of $(1.6 pm 0.3) times 10^{13} M_{odot}$ for a stacked filament region 7.1 $h^{-1}$ Mpc long and 2.5 $h^{-1}$ Mpc wide. This filament signal is compared with a model based on the three-point galaxy-galaxy-convergence correlation function, as developed in Clampitt, Jain & Takada (2014), yielding reasonable agreement.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا