ﻻ يوجد ملخص باللغة العربية
There is an equivalence relation on the set of smooth maps of a manifold into the stable unitary group, defined using a Chern-Simons type form, whose equivalence classes form an abelian group under ordinary block sum of matrices. This construction is functorial, and defines a differential extension of odd K-theory, fitting into natural commutative diagrams and exact sequences involving K-theory and differential forms. To prove this we obtain along the way several results concerning even and odd Chern and Chern-Simons forms.
We construct a model of differential K-theory, using the geometrically defined Chern forms, whose cocycles are certain equivalence classes of maps into the Grassmannians and unitary groups. In particular, we produce the circle-integration maps for th
Tate cohomology (as well as Borel homology and cohomology) of connective K-theory for $G=(mathbb{Z}/2)^n$ was completely calculated by Bruner and Greenlees. In this note, we essentially redo the calculation by a different, more elementary method, and
We define a $K$-theory for pointed right derivators and show that it agrees with Waldhausen $K$-theory in the case where the derivator arises from a good Waldhausen category. This $K$-theory is not invariant under general equivalences of derivators,
For G a finite group and X a G-space on which a normal subgroup A acts trivially, we show that the G-equivariant K-theory of X decomposes as a direct sum of twisted equivariant K-theories of X parametrized by the orbits of the conjugation action of G
Generalized differential cohomology theories, in particular differential K-theory (often called smooth K-theory), are becoming an important tool in differential geometry and in mathematical physics. In this survey, we describe the developments of the