ﻻ يوجد ملخص باللغة العربية
For G a finite group and X a G-space on which a normal subgroup A acts trivially, we show that the G-equivariant K-theory of X decomposes as a direct sum of twisted equivariant K-theories of X parametrized by the orbits of the conjugation action of G on the irreducible representations of A. The twists are group 2-cocycles which encode the obstruction of lifting an irreducible representation of A to the subgroup of G which fixes the isomorphism class of the irreducible representation.
We construct geometric models for classifying spaces of linear algebraic groups in G-equivariant motivic homotopy theory, where G is a tame group scheme. As a consequence, we show that the equivariant motivic spectrum representing the homotopy K-theo
Let G=SU(2) and let Omega G denote the space of continuous based loops in G, equipped with the pointwise conjugation action of G. It is a classical fact in topology that the ordinary cohomology H^*(Omega G) is a divided polynomial algebra Gamma[x]. T
We study twisted $Spin^c$-manifolds over a paracompact Hausdorff space $X$ with a twisting $alpha: X to K(ZZ, 3)$. We introduce the topological index and the analytical index on the bordism group of $alpha$-twisted $Spin^c$-manifolds over $(X, alpha)
Let $X$ be a compact Hausdorff space, let $Gamma$ be a discrete group that acts continuously on $X$ from the right, define $widetilde{X} = {(x,gamma) in X times Gamma : xcdotgamma= x}$, and let $Gamma$ act on $widetilde{X}$ via the formula $(x,gamma)
We use the geometry of the space of fields for gauged supersymmetric mechanics to construct the twisted differential equivariant K-theory of a manifold with an action by a finite group.