ﻻ يوجد ملخص باللغة العربية
Generalized differential cohomology theories, in particular differential K-theory (often called smooth K-theory), are becoming an important tool in differential geometry and in mathematical physics. In this survey, we describe the developments of the recent decades in this area. In particular, we discuss axiomatic characterizations of differential K-theory (and that these uniquely characterize differential K-theory). We describe several explicit constructions, based on vector bundles, on families of differential operators, or using homotopy theory and classifying spaces. We explain the most important properties, in particular about the multiplicative structure and push-forward maps and will sta
In this paper, we develop differential twisted K-theory and define a twisted Chern character on twisted K-theory which depends on a choice of connection and curving on the twisting gerbe. We also establish the general Riemann-Roch theorem in twisted
For a finite volume geodesic polyhedron P in hyperbolic 3-space, with the property that all interior angles between incident faces are integral submultiples of Pi, there is a naturally associated Coxeter group generated by reflections in the faces. F
The main result of this paper is a new and direct proof of the natural transformation from the surgery exact sequence in topology to the analytic K-theory sequence of Higson and Roe. Our approach makes crucial use of analytic properties and new ind
There is an equivalence relation on the set of smooth maps of a manifold into the stable unitary group, defined using a Chern-Simons type form, whose equivalence classes form an abelian group under ordinary block sum of matrices. This construction is
We construct a model of differential K-theory, using the geometrically defined Chern forms, whose cocycles are certain equivalence classes of maps into the Grassmannians and unitary groups. In particular, we produce the circle-integration maps for th