ترغب بنشر مسار تعليمي؟ اضغط هنا

Rapid TeV Gamma-Ray Flaring of BL Lacertae

376   0   0.0 ( 0 )
 نشر من قبل Qi Feng
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on the detection of a very rapid TeV gamma-ray flare from BL Lacertae on 2011 June 28 with the Very Energetic Radiation Imaging Telescope Array System (VERITAS). The flaring activity was observed during a 34.6-minute exposure, when the integral flux above 200 GeV reached $(3.4pm0.6) times 10^{-6} ;text{photons};text{m}^{-2}text{s}^{-1}$, roughly 125% of the Crab Nebula flux measured by VERITAS. The light curve indicates that the observations missed the rising phase of the flare but covered a significant portion of the decaying phase. The exponential decay time was determined to be $13pm4$ minutes, making it one of the most rapid gamma-ray flares seen from a TeV blazar. The gamma-ray spectrum of BL Lacertae during the flare was soft, with a photon index of $3.6pm 0.4$, which is in agreement with the measurement made previously by MAGIC in a lower flaring state. Contemporaneous radio observations of the source with the Very Long Baseline Array (VLBA) revealed the emergence of a new, superluminal component from the core around the time of the TeV gamma-ray flare, accompanied by changes in the optical polarization angle. Changes in flux also appear to have occurred at optical, UV, and GeV gamma-ray wavelengths at the time of the flare, although they are difficult to quantify precisely due to sparse coverage. A strong flare was seen at radio wavelengths roughly four months later, which might be related to the gamma-ray flaring activities. We discuss the implications of these multiwavelength results.



قيم البحث

اقرأ أيضاً

Combined with very-long-baseline interferometry measurements, the observations of fast TeV gamma-ray flares probe the structure and emission mechanism of blazar jets. However, only a handful of such flares have been detected to date, and only within the last few years have these flares been observed from lower-frequency-peaked BL~Lac objects and flat-spectrum radio quasars. We report on a fast TeV gamma-ray flare from the blazar BL~Lacertae observed by VERITAS, with a rise time of $sim$2.3~hr and a decay time of $sim$36~min. The peak flux above 200 GeV is $(4.2 pm 0.6) times 10^{-6} ;text{photon} ;text{m}^{-2}; text{s}^{-1}$ measured with a 4-minute-binned light curve, corresponding to $sim$180% of the flux which is observed from the Crab Nebula above the same energy threshold. Variability contemporaneous with the TeV gamma-ray flare was observed in GeV gamma-ray, X-ray, and optical flux, as well as in optical and radio polarization. Additionally, a possible moving emission feature with superluminal apparent velocity was identified in VLBA observations at 43 GHz, potentially passing the radio core of the jet around the time of the gamma-ray flare. We discuss the constraints on the size, Lorentz factor, and location of the emitting region of the flare, and the interpretations with several theoretical models which invoke relativistic plasma passing stationary shocks.
Observations of fast TeV $gamma$-ray flares from blazars reveal the extreme compactness of emitting regions in blazar jets. Combined with very-long-baseline radio interferometry measurements, they probe the structure and emission mechanism of the jet . We report on a fast TeV $gamma$-ray flare from BL Lacertae observed by VERITAS, with a rise time of about 2.3 hours and a decay time of about 36 minutes. The peak flux at $>$200 GeV measured with the 4-minute binned light curve is $(4.2 pm 0.6) times 10^{-6} ;text{photons} ;text{m}^{-2}, text{s}^{-1}$, or $sim$180% the Crab Nebula flux. Variability in GeV $gamma$-ray, X-ray, and optical flux, as well as in optical and radio polarization was observed around the time of the TeV $gamma$-ray flare. A possible superluminal knot was identified in the VLBA observations at 43 GHz. The flare constrains the size of the emitting region, and is consistent with several theoretical models with stationary shocks.
115 - Filippo DAmmando 2021
During a period of strong $gamma$-ray flaring activity from BL Lacertae, we organized Swift, NICER, and NuSTAR follow-up observations. The source has been monitored by Swift-XRT between 2020 August 11 and October 16, showing a variability amplitude o f 65, with a flux varying between 1.0 $times$ 10$^{-11}$ and 65.3 $times$ 10$^{-11}$ erg cm$^{-2}$ s$^{-1}$. On 2020 October 6, Swift-XRT has observed the source during its historical maximum X-ray flux. A softer-when-brighter behaviour has been observed by XRT, suggesting an increasing importance of the synchrotron emission in the X-ray part of the spectrum covered by XRT during this bright state. Rapid variability in soft X-rays has been observed with both the Swift-XRT and NICER observations with a minimum variability time-scale of 60 s and 240 s, and a doubling time-scale of 274 s and 1008 s, respectively, suggesting very compact emitting regions (1.1 $times$ 10$^{14}$ cm and 4.0 $times$ 10$^{14}$ cm). At hard X-rays, a minimum variability time-scale of $sim$ 5.5 ks has been observed by NuSTAR. We report the first simultaneous NICER and NuSTAR observations of BL Lacertae during 2020 October 11-12. The joint NICER and NuSTAR spectra are well fitted by a broken power-law with a significant difference of the photon index below (2.10) and above (1.60) an energy break at $sim$ 2.7 keV, indicating the presence of two different emission components (i.e, synchrotron and inverse Compton) in the broad band X-ray spectrum. Leaving the total hydrogen column density toward BL Lacertae free to vary, a value of N$_{H,tot}$ = (2.58 $pm$ 0.09) $times$ 10$^{21}$ cm$^{-2}$ has been estimated.
One of the major challenges in studying the cosmic evolution of relativistic jets is the identification of the high-redshift ($z>3$) BL Lacertae objects, a class of jetted active galactic nuclei characterized by their quasi-featureless optical spectr a. Here we report the identification of the first $gamma$-ray emitting BL Lac object, 4FGL~J1219.0+3653 (J1219), beyond $z=3$, i.e., within the first two billion years of the age of the Universe. The optical and near-infrared spectra of J1219 taken from 10.4 m Gran Telescopio Canarias exhibit no emission lines down to an equivalent width of $sim$3.5 A supporting its BL Lac nature. The detection of a strong Lyman-$alpha$ break at $sim$5570 A, on the other hand, confirms that J2119 is indeed a high-redshift ($zsim3.59$) quasar. Based on the prediction of a recent BL Lac evolution model, J1219 is one of the only two such objects expected to be present within the comoving volume at $z=3.5$. Future identifications of more $z>3$ $gamma$-ray emitting BL Lac sources, therefore, will be crucial to verify the theories of their cosmic evolution.
151 - W. Zhong 2018
In this paper, we compile the very-high-energy and high-energy spectral indices of 43 BL Lac objects from the literature. Based on a simple math model, $DeltaGamma_{obs}=alpha {rm{z}}+beta $, we present evidence for the origin of an observed spectral break that is denoted by the difference between the observed very-high-energy and high-energy spectral indices, $DeltaGamma_{obs}$. We find by linear regression analysis that $alpha e 0$ and $beta e 0$. These results suggest that the extragalactic background light attenuation and the intrinsic curvature dominate on the GeV-TeV $gamma$-ray energy spectral break of BL Lac objects. We argue that the extragalactic background light attenuation is an exclusive explanation for the redshift evolution of the observed spectral break.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا