ترغب بنشر مسار تعليمي؟ اضغط هنا

The First Gamma-ray Emitting BL Lacertae Object at the Cosmic Dawn

124   0   0.0 ( 0 )
 نشر من قبل Alberto Dom\\'inguez
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

One of the major challenges in studying the cosmic evolution of relativistic jets is the identification of the high-redshift ($z>3$) BL Lacertae objects, a class of jetted active galactic nuclei characterized by their quasi-featureless optical spectra. Here we report the identification of the first $gamma$-ray emitting BL Lac object, 4FGL~J1219.0+3653 (J1219), beyond $z=3$, i.e., within the first two billion years of the age of the Universe. The optical and near-infrared spectra of J1219 taken from 10.4 m Gran Telescopio Canarias exhibit no emission lines down to an equivalent width of $sim$3.5 A supporting its BL Lac nature. The detection of a strong Lyman-$alpha$ break at $sim$5570 A, on the other hand, confirms that J2119 is indeed a high-redshift ($zsim3.59$) quasar. Based on the prediction of a recent BL Lac evolution model, J1219 is one of the only two such objects expected to be present within the comoving volume at $z=3.5$. Future identifications of more $z>3$ $gamma$-ray emitting BL Lac sources, therefore, will be crucial to verify the theories of their cosmic evolution.



قيم البحث

اقرأ أيضاً

AIMS. We are studying an unbiased sample of 42 nearby (z < 0.2) BL Lacertae objects with a multi-wavelength approach. The results of VLBI observations were presented in the first paper of this series. In this paper, we study the $gamma$-ray propertie s of the sample. METHODS. We analyse data collected by the Fermi LAT during its first 8.5 years of operation in the energy range 0.1-300 GeV. RESULTS. We reveal 23 sources with a test statistic greater than 25 (corresponding to $sim$ 4.6-$sigma$) out of 42, with 3 sources not detected in the 3LAC catalogue, and fluxes between $3.5times 10^{-10}$ and $7.4times10^{-8}$ ph cm$^{-2}$ s$^{-1}$. The majority of the sources have hard spectra ($Gamma leq 2$), with only four having values in the range 2.1-2.4. The three newly detected sources have fluxes in the range between $0.54times10^{-9}$ and $1.35times10^{-9}$ ph cm$^{-2}$ s$^{-1}$, and photon index 1.7-1.9. Among the 23 LAT-detected sources, 19 are included in the 3FHL, with a spectrum that connects relatively smoothly from 0.1 GeV to 2 TeV. LAT-detected BL Lacs are more luminous on parsec scales with respect to non-LAT-detected sources and have larger core dominance according to the unified models. CONCLUSIONS. The LAT-detected BL Lacs seem to be composed of a bulk of classical sources dominated by Doppler boosting and characterised by compact and bright radio emission as well as hard $gamma$-ray spectra. Moreover, we have identified a possible population of low-luminosity BL Lacs not detected by LAT, lacking a VLBI core, and with a small Doppler factor. Furthermore, three LAT-detected sources show non-classical properties for $gamma$-ray emitting BL Lacs (no evidence of relativistic jet, low Doppler factor in radio images, relatively low core dominance) and three other sources, while showing radio emission on parsec scales, are not detected in $gamma$ rays so far.
365 - T. Arlen , T. Aune , M. Beilicke 2012
We report on the detection of a very rapid TeV gamma-ray flare from BL Lacertae on 2011 June 28 with the Very Energetic Radiation Imaging Telescope Array System (VERITAS). The flaring activity was observed during a 34.6-minute exposure, when the inte gral flux above 200 GeV reached $(3.4pm0.6) times 10^{-6} ;text{photons};text{m}^{-2}text{s}^{-1}$, roughly 125% of the Crab Nebula flux measured by VERITAS. The light curve indicates that the observations missed the rising phase of the flare but covered a significant portion of the decaying phase. The exponential decay time was determined to be $13pm4$ minutes, making it one of the most rapid gamma-ray flares seen from a TeV blazar. The gamma-ray spectrum of BL Lacertae during the flare was soft, with a photon index of $3.6pm 0.4$, which is in agreement with the measurement made previously by MAGIC in a lower flaring state. Contemporaneous radio observations of the source with the Very Long Baseline Array (VLBA) revealed the emergence of a new, superluminal component from the core around the time of the TeV gamma-ray flare, accompanied by changes in the optical polarization angle. Changes in flux also appear to have occurred at optical, UV, and GeV gamma-ray wavelengths at the time of the flare, although they are difficult to quantify precisely due to sparse coverage. A strong flare was seen at radio wavelengths roughly four months later, which might be related to the gamma-ray flaring activities. We discuss the implications of these multiwavelength results.
236 - Taotao Fang 2011
Since the launch of the Einstein X-ray Observatory in the 1970s, a number of broad absorption features have been reported in the X-ray spectra of BL Lac objects. These features are often interpreted as arising from high velocity outflows intrinsic to the BL Lac object, therefore providing important information about the inner environment around the central engine. However, such absorption features have not been observed more recently with high-resolution X-ray telescopes such as Chandra and XMM-Newton. In this paper, we report the detection of a transient X-ray absorption feature intrinsic to the BL Lac object H 2356-309 with the Chandra X-ray Telescope. This BL Lac object was observed during XMM cycle 7, Chandra cycle 8 and 10, as part of our campaign to investigate X-ray absorption produced by the warm-hot intergalactic medium (WHIM) residing in the foreground large scale superstructure. During one of the 80 ksec, Chandra cycle 10 observations, a transient absorption feature was detected at 3.3-sigma (or 99.9% confidence level, accounting for the number of trials), which we identify as the OVIII K-alpha line produced by an absorber intrinsic to the BL Lac object. None of the other 11 observations showed this line. We constrain the ionization parameter (25 <~ Xi <~ 40) and temperature (10^5 < T < 2.5 10^7 K) of the absorber. This absorber is likely produced by an outflow with a velocity up to 1,500 km/s. There is a suggestion of possible excess emission on the long-wavelength side of the absorption line; however, the derived properties of the emission material are very different from those of the absorption material, implying it is unlikely a typical P Cygni-type profile.
We present observations of a major outburst at centimeter, millimeter, optical, X-ray, and gamma-ray wavelengths of the BL Lacertae object AO 0235+164. We analyze the timing of multi-waveband variations in the flux and linear polarization, as well as changes in Very Long Baseline Array (VLBA) images at 7mm with 0.15 milliarcsecond resolution. The association of the events at different wavebands is confirmed at high statistical significance by probability arguments and Monte-Carlo simulations. A series of sharp peaks in optical linear polarization, as well as a pronounced maximum in the 7 mm polarization of a superluminal jet knot, indicate rapid fluctuations in the degree of ordering of the magnetic field. These results lead us to conclude that the outburst occurred in the jet both in the quasi-stationary core and in the superluminal knot, both parsecs downstream of the supermassive black hole. We interpret the outburst as a consequence of the propagation of a disturbance, elongated along the line of sight by light-travel time delays, that passes through a standing recollimation shock in the core and propagates down the jet to create the superluminal knot. The multi-wavelength light curves vary together on long time-scales (months/years), but the correspondence is poorer on shorter time-scales. This, as well as the variability of the polarization and the dual location of the outburst, agrees with the expectations of a multi-zone emission model in which turbulence plays a major role in modulating the synchrotron and inverse Compton fluxes.
Controversial studies on the jet collimation profile of BL Lacertae (BL Lac), the eponymous blazar of BL Lac objects class, complicate the scenario in this already puzzling class of objects. Understanding the jet geometry, in connection with the jet kinematics and the physical conditions in the surrounding medium, is fundamental to better constrain the formation, acceleration and collimation mechanisms in extragalactic jets. With the aim of investigating the jet geometry in the innermost regions of the jet of BL Lac, and solving the controversy, we explore the radio jet in this source, using high resolution millimeter-wave VLBI data. We collect 86GHz GMVA and 43GHz VLBA data to obtain stacked images that we use to infer the jet collimation profile by means of two comparable methods. We analyze the kinematics at 86GHz, and we discuss it in the context of the jet expansion. Finally we consider a possible implication of the Bondi sphere in shaping the different expanding region observed along the jet. We found that the jet in BL Lac expands with an overall conical geometry. A higher expanding rate region is observed between ~5 and 10 pc (de-projected) from the black hole. Such a region is associated with the decrease in brightness usually observed in high-frequency VLBI images of BL Lac. The jet retrieves the original jet expansion around 17 pc, where the presence of a recollimation shock is supported by both the jet profile and the 15GHz kinematics (MOJAVE survey). The change in the jet expansion profile occurring at ~5 pc could be associated with a change in the external pressure profile in correspondence of the Bondi radius (~3.3X10$^5$$R_s$).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا