ﻻ يوجد ملخص باللغة العربية
During a period of strong $gamma$-ray flaring activity from BL Lacertae, we organized Swift, NICER, and NuSTAR follow-up observations. The source has been monitored by Swift-XRT between 2020 August 11 and October 16, showing a variability amplitude of 65, with a flux varying between 1.0 $times$ 10$^{-11}$ and 65.3 $times$ 10$^{-11}$ erg cm$^{-2}$ s$^{-1}$. On 2020 October 6, Swift-XRT has observed the source during its historical maximum X-ray flux. A softer-when-brighter behaviour has been observed by XRT, suggesting an increasing importance of the synchrotron emission in the X-ray part of the spectrum covered by XRT during this bright state. Rapid variability in soft X-rays has been observed with both the Swift-XRT and NICER observations with a minimum variability time-scale of 60 s and 240 s, and a doubling time-scale of 274 s and 1008 s, respectively, suggesting very compact emitting regions (1.1 $times$ 10$^{14}$ cm and 4.0 $times$ 10$^{14}$ cm). At hard X-rays, a minimum variability time-scale of $sim$ 5.5 ks has been observed by NuSTAR. We report the first simultaneous NICER and NuSTAR observations of BL Lacertae during 2020 October 11-12. The joint NICER and NuSTAR spectra are well fitted by a broken power-law with a significant difference of the photon index below (2.10) and above (1.60) an energy break at $sim$ 2.7 keV, indicating the presence of two different emission components (i.e, synchrotron and inverse Compton) in the broad band X-ray spectrum. Leaving the total hydrogen column density toward BL Lacertae free to vary, a value of N$_{H,tot}$ = (2.58 $pm$ 0.09) $times$ 10$^{21}$ cm$^{-2}$ has been estimated.
We report on the detection of a very rapid TeV gamma-ray flare from BL Lacertae on 2011 June 28 with the Very Energetic Radiation Imaging Telescope Array System (VERITAS). The flaring activity was observed during a 34.6-minute exposure, when the inte
Combined with very-long-baseline interferometry measurements, the observations of fast TeV gamma-ray flares probe the structure and emission mechanism of blazar jets. However, only a handful of such flares have been detected to date, and only within
Observations of fast TeV $gamma$-ray flares from blazars reveal the extreme compactness of emitting regions in blazar jets. Combined with very-long-baseline radio interferometry measurements, they probe the structure and emission mechanism of the jet
MeV blazars are a sub--population of the blazar family, exhibiting larger--than--average jet powers, accretion luminosities and black hole masses. Because of their extremely hard X--ray continua, these objects are best studied in the X-ray domain. He
Since the launch of the Fermi satellite, BL Lacertae has been moderately active at gamma-rays and optical frequencies until May 2011, when the source started a series of strong flares. The exceptional optical sampling achieved by the GLAST-AGILE Supp