ﻻ يوجد ملخص باللغة العربية
The magnetic phase diagram has been mapped out via the measurements of electronic resistivity, magnetization and specific heat in the cobalt-based layered LnCo1-xFexAsO (Ln=La, Sm) compounds. The ferromagnetic (FM) transition at 63 K for LaCoAsO is rapidly suppressed upon Fe doping, and ultimately disappears around x=0.3 in the LaCo1-xFexAsO system. When La is replaced by magnetic rare earth element Sm, the 3d electrons first undergo a FM transition at Tc = 75 K, followed by an antiferromagnetic (AFM) transition at a lower temperature TN1 = 45 K. With partial Fe doping on the Co site, both FM (Tc) and AFM (TN1) transition temperatures are significantly suppressed, and finally approach zero kelvin at x = 0.3 and 0.2, respectively. Meanwhile, a third magnetic transition at TN2 = 5.6 K for SmCoAsO, associated with the AFM order of the Sm3+ 4f-oments, is uncovered and TN2 is found to be almost robust against the small Fe-doping. These results suggest that the 4f electrons of Sm3+ have an important effect on the magnetic behavior of 3d electrons in the 1111 type Co-based LnCo1-xFexAsO systems. In contrast, the magnetism of the f-electrons is relatively unaffected by the variation of the 3d electrons. The rich magnetic phase diagram in the Co-rich side of the LnCo1-xFexAsO system, therefore, is established.
Mn3V2O8 is a magnetic system in which S = 5/2 Mn2+ is found in the kagome staircase lattice. Here we report the magnetic phase diagram for temperatures above 2 K and applied magnetic fields below 9 T, characterized by measurements of the magnetizatio
We present the results of muon-spin relaxation ($mu^{+}$SR) measurements on antiferromagnetic and ferromagnetic spin chains. In antiferromagnetic CuF$_{2}$(pyz) we identify a transition to long range magnetic order taking place at $T_{mathrm{N}} = 0.
Magnetism in SmPd2Al3 was investigated on a single crystal by magnetometry and neutron diffraction. SmPd2Al3 represents a distinctive example of the Sm magnetism exhibiting complex magnetic behavior at low temperatures with four consecutive magnetic
Neutron powder diffraction (NPD) study of textit{Ln}MnSbO (textit{Ln }$=$ La or Ce) reveals differences between the magnetic ground state of the two compounds due to the strong Ce-Mn coupling compared to La-Mn. The two compounds adopt the textit{P4/n
We investigate the effect of external pressure on magnetic order in undoped LnFeAsO (Ln = La, Ce, Pr, La) by using muon-spin relaxation measurements and ab-initio calculations. Both magnetic transition temperature $T_m$ and Fe magnetic moment decreas