ﻻ يوجد ملخص باللغة العربية
Neutron powder diffraction (NPD) study of textit{Ln}MnSbO (textit{Ln }$=$ La or Ce) reveals differences between the magnetic ground state of the two compounds due to the strong Ce-Mn coupling compared to La-Mn. The two compounds adopt the textit{P4/nmm} space group down to 2 K and whereas magnetization measurements do not show obvious anomaly at high temperatures, NPD reveals a C-type antiferromagnetic (AFM) order below $T_{mathrm{N}} = 255 $ K for LaMnSbO and 240 K for CeMnSbO. While the magnetic structure of LaMnSbO is preserved to base temperature, a sharp transition at $T_{mathrm{SR}} = 4.5 $K is observed in CeMnSbO due to a spin-reorientation (SR) transition of the Mn$^{mathrm{2+}}$ magnetic moments from pointing along the $c$-axis to the textit{ab}-plane. The SR transition in CeMnSbO is accompanied by a simultaneous long-range AFM ordering of the Ce moments which indicates that the Mn SR transition is driven by the Ce-Mn coupling. The ordered moments are found to be somewhat smaller than those expected for Mn$^{mathrm{2+}}$ ($S = 5/2$) in insulators, but large enough to suggest that these compounds belong to the class of local-moment antiferromagnets. The lower $T_{mathrm{Nthinspace }}$ found in these two compounds compared to the As-based counterparts ($T_{mathrm{N}} = 317$ for LaMnAsO, $T_{mathrm{N}} = 347$ K for CeMnAsO) indicates that the Mn-$Pn$ ($Pn=$ As or Sb) hybridization that mediates the superexchange Mn-$Pn$-Mn coupling is weaker for the Sb-based compounds.
We have performed systematic first principles study of the electronic structure and band topology properties of $LnPn$ compounds ($Ln$=Ce, Pr, Gd, Sm, Yb; $Pn$=Sb, Bi). Assuming the $f$-electrons are well localized in these materials, both hybrid fun
Electrical resistivity measurements as a function of temperature between 1 K and 300 K were performed at various pressures up to 3 GPa on the superconducting layered compounds Ln(O0.5F0.5)BiS2 (Ln = La, Ce). At atmospheric pressure, La(O0.5F0.5)BiS2
We investigate the effect of external pressure on magnetic order in undoped LnFeAsO (Ln = La, Ce, Pr, La) by using muon-spin relaxation measurements and ab-initio calculations. Both magnetic transition temperature $T_m$ and Fe magnetic moment decreas
We present the results of muon-spin relaxation ($mu^{+}$SR) measurements on antiferromagnetic and ferromagnetic spin chains. In antiferromagnetic CuF$_{2}$(pyz) we identify a transition to long range magnetic order taking place at $T_{mathrm{N}} = 0.
We prepared the samples K$_{1-x}$Ln$_{x}$Fe$_2$As$_2$ (Ln=Sm, Nd and La) with ThCr$_2$Si$_2$-type structure. These samples were characterized by X-ray diffraction, resistivity, susceptibility and thermoelectric power (TEP). Substitution of Ln (Ln=La,