ﻻ يوجد ملخص باللغة العربية
Mn3V2O8 is a magnetic system in which S = 5/2 Mn2+ is found in the kagome staircase lattice. Here we report the magnetic phase diagram for temperatures above 2 K and applied magnetic fields below 9 T, characterized by measurements of the magnetization and specific heat with field along the three unique lattice directions. At low applied magnetic fields, the system first orders magnetically below Tm1 ~ 21 K, and then shows a second magnetic phase transition at Tm2 ~ 15 K. In addition, a phase transition that is apparent in specific heat but not seen in magnetization is found for all three applied field orientations, converging towards Tm2 as H -> 0. The magnetic behavior is highly anisotropic, with critical fields for magnetic phase boundaries much higher when the field is applied perpendicular to the Kagome staircase plane than when applied in-plane. The field-temperature (H - T) phase diagrams are quite rich, with 7 distinct phases observed.
At zero magnetic field, a series of five phase transitions occur in Co3V2O8. The Neel temperature, TN=11.4 K, is followed by four additional phase changes at T1=8.9 K, T2=7.0 K, T3=6.9 K, and T4=6.2 K. The different phases are distinguished by the co
Co3V2O8 (CVO) has a geometrically frustrated magnetic lattice, a Kagome staircase. The crystal structure consists of two inequivalent Co sites, one-dimensional chains of Co(2) spine sites, linked by Co(1) cross-tie sites. Neutron powder diffraction h
We present powder and single-crystal neutron diffraction and bulk measurements of the Kagome-staircase compound Ni3V2O8 (NVO) in fields up to 8.5T applied along the c-direction. (The Kagome plane is the a-c plane.) This system contains two types of N
The magnetic properties of Co3V2O8 have been studied by single-crystal neutron-diffraction. In zero magnetic field, the observed broadening of the magnetic Bragg peaks suggests the presence of disorder both in the low-temperature ferromagnetic and in
We present thermodynamic and neutron data on Ni_3V_2O_8, a spin-1 system on a kagome staircase. The extreme degeneracy of the kagome antiferromagnet is lifted to produce two incommensurate phases at finite T - one amplitude modulated, the other helic