ترغب بنشر مسار تعليمي؟ اضغط هنا

A connection between optimal control theory and adiabatic passage techniques in quantum systems

191   0   0.0 ( 0 )
 نشر من قبل Sugny Dominique
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

This work explores the relationship between optimal control theory and adiabatic passage techniques in quantum systems. The study is based on a geometric analysis of the Hamiltonian dynamics constructed from the Pontryagin Maximum Principle. In a three-level quantum system, we show that the Stimulated Raman Adiabatic Passage technique can be associated to a peculiar Hamiltonian singularity. One deduces that the adiabatic pulse is solution of the optimal control problem only for a specific cost functional. This analysis is extended to the case of a four-level quantum system.



قيم البحث

اقرأ أيضاً

We consider fast high-fidelity quantum control by using a shortcut to adiabaticity (STA) technique and optimal control theory (OCT). Three specific examples, including expansion of cold atoms from the harmonic trap, atomic transport by moving harmoni c trap, and spin dynamics in the presence of dissipation, are explicitly detailed. Using OCT as a qualitative guide, we demonstrate how STA protocols designed from inverse engineering method, can approach with very high precision optimal solutions built about physical constraints, by a proper choice of the interpolation function and with a very reduced number of adjustable parameters.
168 - A.V. Turbiner , E. Shuryak 2021
It is shown that for one-dimensional anharmonic oscillator with potential $V(x)= a x^2+ldots=frac{1}{g^2},hat{V}(gx)$ (and for perturbed Coulomb problem $V(r)=frac{alpha}{r} + ldots = g,tilde{V}(gr)$) the Perturbation Theory in powers of coupling con stant $g$ (weak coupling regime) and semiclassical expansion in powers of $hbar^{1/2}$ for energies coincide. %The same is true for strong coupling regime expansion in inverse fractional powers in $g$ of energy. It is related to the fact that the dynamics developed in two spaces: $x (r)$-space and in $gx (gr)$ space, leads to the same energy spectra. The equations which govern dynamics in these two spaces, the Riccati-Bloch equation and the Generalized Bloch(GB) equation, respectively, are presented. It is shown that perturbation theory for logarithmic derivative of wave function in $gx (gr)$ space leads to true semiclassical expansion in powers of $hbar^{1/2}$ and corresponds to flucton calculus for density matrix in path integral formalism in Euclidean (imaginary) time.
Whether one is interested in quantum state preparation or in the design of efficient heat engines, adiabatic (reversible) transformations play a pivotal role in minimizing computational complexity and energy losses. Understanding the structure of the se transformations and identifying the systems for which such transformations can be performed efficiently and quickly is therefore of primary importance. In this paper we focus on finding optimal paths in the space of couplings controlling the systems Hamiltonian. More specifically, starting from a local Hamiltonian we analyze directions in the space of couplings along which adiabatic transformations can be accurately generated by local operators, which are both realizable in experiments and easy to simulate numerically. We consider a non-integrable 1D Ising model parametrized by two independent couplings, corresponding to longitudinal and transverse magnetic fields. We find regions in the space of couplings characterized by a very strong anisotropy of the variational adiabatic gauge potential (AGP), generating the adiabatic transformations, which allows us to define optimal adiabatic paths. We find that these paths generally terminate at singular points characterized by extensive degeneracies in the energy spectrum, splitting the parameter space into adiabatically disconnected regions. The anisotropy follows from singularities in the AGP, and we identify special robust weakly-thermalizing and non-absorbing many-body dark states which are annihilated by the singular part of the AGP and show that their existence extends deep into the ergodic regime.
We present schemes for geometric phase compensation in adiabatic passage which can be used for the implementation of quantum logic gates with atomic ensembles consisting of an arbitrary number of strongly interacting atoms. Protocols using double seq uences of stimulated Raman adiabatic passage (STIRAP) or adiabatic rapid passage (ARP) pulses are analyzed. Switching the sign of the detuning between two STIRAP sequences, or inverting the phase between two ARP pulses, provides state transfer with well defined amplitude and phase independent of atom number in the Rydberg blockade regime. Using these pulse sequences we present protocols for universal single-qubit and two-qubit operations in atomic ensembles containing an unknown number of atoms.
Topological orders are exotic phases of matter existing in strongly correlated quantum systems, which are beyond the usual symmetry description and cannot be distinguished by local order parameters. Here we report an experimental quantum simulation o f the Wen-plaquette spin model with different topological orders in a nuclear magnetic resonance system, and observe the adiabatic transition between two $Z_2$ topological orders through a spin-polarized phase by measuring the nonlocal closed-string (Wilson loop) operator. Moreover, we also measure the entanglement properties of the topological orders. This work confirms the adiabatic method for preparing topologically ordered states and provides an experimental tool for further studies of complex quantum systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا