ترغب بنشر مسار تعليمي؟ اضغط هنا

Adiabatic landscape and optimal paths in ergodic systems

75   0   0.0 ( 0 )
 نشر من قبل Sho Sugiura
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Whether one is interested in quantum state preparation or in the design of efficient heat engines, adiabatic (reversible) transformations play a pivotal role in minimizing computational complexity and energy losses. Understanding the structure of these transformations and identifying the systems for which such transformations can be performed efficiently and quickly is therefore of primary importance. In this paper we focus on finding optimal paths in the space of couplings controlling the systems Hamiltonian. More specifically, starting from a local Hamiltonian we analyze directions in the space of couplings along which adiabatic transformations can be accurately generated by local operators, which are both realizable in experiments and easy to simulate numerically. We consider a non-integrable 1D Ising model parametrized by two independent couplings, corresponding to longitudinal and transverse magnetic fields. We find regions in the space of couplings characterized by a very strong anisotropy of the variational adiabatic gauge potential (AGP), generating the adiabatic transformations, which allows us to define optimal adiabatic paths. We find that these paths generally terminate at singular points characterized by extensive degeneracies in the energy spectrum, splitting the parameter space into adiabatically disconnected regions. The anisotropy follows from singularities in the AGP, and we identify special robust weakly-thermalizing and non-absorbing many-body dark states which are annihilated by the singular part of the AGP and show that their existence extends deep into the ergodic regime.



قيم البحث

اقرأ أيضاً

231 - Umberto Lucia 2011
The principle of maximum irreversible is proved to be a consequence of a stochastic order of the paths inside the phase space; indeed, the system evolves on the greatest path in the stochastic order. The result obtained is that, at the stability, the entropy generation is maximum and, this maximum value is consequence of the stochastic order of the paths in the phase space, while, conversely, the stochastic order of the paths in the phase space is a consequence of the maximum of the entropy generation at the stability.
Using Schwinger Variational Principle we solve the problem of quantum harmonic oscillator with time dependent frequency. Here, we do not take the usual approach which implicitly assumes an adiabatic behavior for the frequency. Instead, we propose a n ew solution where the frequency only needs continuity in its first derivative or to have a finite set of removable discontinuities.
Dual-unitary quantum circuits can be used to construct 1+1 dimensional lattice models for which dynamical correlations of local observables can be explicitly calculated. We show how to analytically construct classes of dual-unitary circuits with any desired level of (non-)ergodicity for any dimension of the local Hilbert space, and present analytical results for thermalization to an infinite-temperature Gibbs state (ergodic) and a generalized Gibbs ensemble (non-ergodic). It is shown how a tunable ergodicity-inducing perturbation can be added to a non-ergodic circuit without breaking dual-unitarity, leading to the appearance of prethermalization plateaux for local observables.
One of the key tasks in physics is to perform measurements in order to determine the state of a system. Often, measurements are aimed at determining the values of physical parameters, but one can also ask simpler questions, such as is the system in s tate A or state B?. In quantum mechanics, the latter type of measurements can be studied and optimized using the framework of quantum hypothesis testing. In many cases one can explicitly find the optimal measurement in the limit where one has simultaneous access to a large number $n$ of identical copies of the system, and estimate the expected error as $n$ becomes large. Interestingly, error estimates turn out to involve various quantum information theoretic quantities such as relative entropy, thereby giving these quantities operational meaning. In this paper we consider the application of quantum hypothesis testing to quantum many-body systems and quantum field theory. We review some of the necessary background material, and study in some detail the situation where the two states one wants to distinguish are parametrically close. The relevant error estimates involve quantities such as the variance of relative entropy, for which we prove a new inequality. We explore the optimal measurement strategy for spin chains and two-dimensional conformal field theory, focusing on the task of distinguishing reduced density matrices of subsystems. The optimal strategy turns out to be somewhat cumbersome to implement in practice, and we discuss a possible alternative strategy and the corresponding errors.
The first proof of the quantum adiabatic theorem was given as early as 1928. Today, this theorem is increasingly applied in a many-body context, e.g. in quantum annealing and in studies of topological properties of matter. In this setup, the rate of variation $varepsilon$ of local terms is indeed small compared to the gap, but the rate of variation of the total, extensive Hamiltonian, is not. Therefore, applications to many-body systems are not covered by the proofs and arguments in the literature. In this letter, we prove a version of the adiabatic theorem for gapped ground states of quantum spin systems, under assumptions that remain valid in the thermodynamic limit. As an application, we give a mathematical proof of Kubo linear response formula for a broad class of gapped interacting systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا