ترغب بنشر مسار تعليمي؟ اضغط هنا

On connection between perturbation theory and semiclassical expansion in quantum mechanics

169   0   0.0 ( 0 )
 نشر من قبل Alexander Turbiner
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

It is shown that for one-dimensional anharmonic oscillator with potential $V(x)= a x^2+ldots=frac{1}{g^2},hat{V}(gx)$ (and for perturbed Coulomb problem $V(r)=frac{alpha}{r} + ldots = g,tilde{V}(gr)$) the Perturbation Theory in powers of coupling constant $g$ (weak coupling regime) and semiclassical expansion in powers of $hbar^{1/2}$ for energies coincide. %The same is true for strong coupling regime expansion in inverse fractional powers in $g$ of energy. It is related to the fact that the dynamics developed in two spaces: $x (r)$-space and in $gx (gr)$ space, leads to the same energy spectra. The equations which govern dynamics in these two spaces, the Riccati-Bloch equation and the Generalized Bloch(GB) equation, respectively, are presented. It is shown that perturbation theory for logarithmic derivative of wave function in $gx (gr)$ space leads to true semiclassical expansion in powers of $hbar^{1/2}$ and corresponds to flucton calculus for density matrix in path integral formalism in Euclidean (imaginary) time.



قيم البحث

اقرأ أيضاً

In our previous paper I (del Valle--Turbiner, Int. J. Mod. Phys. A34, 1950143, 2019) it was developed the formalism to study the general $D$-dimensional radial anharmonic oscillator with potential $V(r)= frac{1}{g^2},hat{V}(gr)$. It was based on the Perturbation Theory (PT) in powers of $g$ (weak coupling regime) and in inverse, fractional powers of $g$ (strong coupling regime) in both $r$-space and in $(gr)$-space, respectively. As the result it was introduced - the Approximant - a locally-accurate uniform compact approximation of a wave function. If taken as a trial function in variational calculations it has led to variational energies of unprecedented accuracy for cubic anharmonic oscillator. In this paper the formalism is applied to both quartic and sextic, spherically-symmetric radial anharmonic oscillators with two term potentials $V(r)= r^2 + g^{2(m-1)}, r^{2m}, m=2,3$, respectively. It is shown that a two-parametric Approximant for quartic oscillator and a five-parametric one for sextic oscillator for the first four eigenstates used to calculate the variational energy are accurate in 8-12 figures for any $D=1,2,3ldots $ and $g geq 0$, while the relative deviation of the Approximant from the exact eigenfunction is less than $10^{-6}$ for any $r geq 0$.
The Levi-Civita transformation is applied in the two-dimensional (2D) Dirac and Klein-Gordon (KG) equations with equal external scalar and vector potentials. The Coulomb and harmonic oscillator problems are connected via the Levi-Civita transformatio n. These connections lead to an approach to solve the Coulomb problems using the results of the harmonic oscillator potential in the above-mentioned relativistic systems.
The explicit semiclassical treatment of logarithmic perturbation theory for the nonrelativistic bound states problem is developed. Based upon $hbar$-expansions and suitable quantization conditions a new procedure for deriving perturbation expansions for the one-dimensional anharmonic oscillator is offered. Avoiding disadvantages of the standard approach, new handy recursion formulae with the same simple form both for ground and exited states have been obtained. As an example, the perturbation expansions for the energy eigenvalues of the harmonic oscillator perturbed by $lambda x^{6}$ are considered.
A topological $theta$-term in gauge theories, including quantum chromodynamics in 3+1 dimensions, gives rise to a sign problem that makes classical Monte Carlo simulations impractical. Quantum simulations are not subject to such sign problems and are a promising approach to studying these theories in the future. In the near term, it is interesting to study simpler models that retain some of the physical phenomena of interest and their implementation on quantum hardware. For example, dimensionally-reducing gauge theories on small spatial tori produces quantum mechanical models which, despite being relatively simple to solve, retain interesting vacuum and symmetry structures from the parent gauge theories. Here we consider quantum mechanical particle-on-a-circle models, related by dimensional reduction to the 1+1d Schwinger model, that possess a $theta$ term and realize an t Hooft anomaly or global inconsistency at $theta = pi$. These models also exhibit the related phenomena of spontaneous symmetry breaking and instanton-anti-instanton interference in real time. We propose an experimental scheme for the real-time simulation of a particle on a circle with a $theta$-term and a $mathbb{Z}_n$ potential using a synthetic dimension encoded in a Rydberg atom. Simulating the Rydberg atom with realistic experimental parameters, we demonstrate that the essential physics can be well-captured by the experiment, with expected behavior in the tunneling rate as a function of $theta$. Similar phenomena and observables can also arise in more complex quantum mechanical models connected to higher-dimensional nonabelian gauge theories by dimensional reduction.
To simulate a quantum system with continuous degrees of freedom on a quantum computer based on quantum digits, it is necessary to reduce continuous observables (primarily coordinates and momenta) to discrete observables. We consider this problem base d on expanding quantum observables in series in powers of two and three analogous to the binary and ternary representations of real numbers. The coefficients of the series (digits) are, therefore, Hermitian operators. We investigate the corresponding quantum mechanical operators and the relations between them and show that the binary and ternary expansions of quantum observables automatically leads to renormalization of some divergent integrals and series (giving them finite values).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا