ﻻ يوجد ملخص باللغة العربية
It is shown that for one-dimensional anharmonic oscillator with potential $V(x)= a x^2+ldots=frac{1}{g^2},hat{V}(gx)$ (and for perturbed Coulomb problem $V(r)=frac{alpha}{r} + ldots = g,tilde{V}(gr)$) the Perturbation Theory in powers of coupling constant $g$ (weak coupling regime) and semiclassical expansion in powers of $hbar^{1/2}$ for energies coincide. %The same is true for strong coupling regime expansion in inverse fractional powers in $g$ of energy. It is related to the fact that the dynamics developed in two spaces: $x (r)$-space and in $gx (gr)$ space, leads to the same energy spectra. The equations which govern dynamics in these two spaces, the Riccati-Bloch equation and the Generalized Bloch(GB) equation, respectively, are presented. It is shown that perturbation theory for logarithmic derivative of wave function in $gx (gr)$ space leads to true semiclassical expansion in powers of $hbar^{1/2}$ and corresponds to flucton calculus for density matrix in path integral formalism in Euclidean (imaginary) time.
In our previous paper I (del Valle--Turbiner, Int. J. Mod. Phys. A34, 1950143, 2019) it was developed the formalism to study the general $D$-dimensional radial anharmonic oscillator with potential $V(r)= frac{1}{g^2},hat{V}(gr)$. It was based on the
The Levi-Civita transformation is applied in the two-dimensional (2D) Dirac and Klein-Gordon (KG) equations with equal external scalar and vector potentials. The Coulomb and harmonic oscillator problems are connected via the Levi-Civita transformatio
The explicit semiclassical treatment of logarithmic perturbation theory for the nonrelativistic bound states problem is developed. Based upon $hbar$-expansions and suitable quantization conditions a new procedure for deriving perturbation expansions
A topological $theta$-term in gauge theories, including quantum chromodynamics in 3+1 dimensions, gives rise to a sign problem that makes classical Monte Carlo simulations impractical. Quantum simulations are not subject to such sign problems and are
To simulate a quantum system with continuous degrees of freedom on a quantum computer based on quantum digits, it is necessary to reduce continuous observables (primarily coordinates and momenta) to discrete observables. We consider this problem base