ﻻ يوجد ملخص باللغة العربية
The thick disk rotation--metallicity correlation, partial V_phi/partial[Fe/H] =40div 50 km s^{-1}dex^{-1} represents an important signature of the formation processes of the galactic disk. We use nondissipative numerical simulations to follow the evolution of a Milky Way (MW)-like disk to verify if secular dynamical processes can account for this correlation in the old thick disk stellar population. We followed the evolution of an ancient disk population represented by 10 million particles whose chemical abundances were assigned by assuming a cosmologically plausible radial metallicity gradient with lower metallicity in the inner regions, as expected for the 10-Gyr-old MW. Essentially, inner disk stars move towards the outer regions and populate layers located at higher |z|. A rotation--metallicity correlation appears, which well resembles the behaviour observed in our Galaxy at a galactocentric distance between 8 kpc and 10 kpc. In particular,we measure a correlation of partial V_phi/partial[Fe/H]simeq 60 km s^{-1}dex^{-1} for particles at 1.5 kpc < |z| < 2.0 kpc that persists up to 6 Gyr. Our pure N-body models can account for the V_phi vs. [Fe/H] correlation observed in the thick disk of our Galaxy, suggesting that processes internal to the disk such as heating and radial migration play a role in the formation of this old stellar component. In this scenario, the positive rotation-metallicity correlation of the old thick disk population would represent the relic signature of an ancient inverse chemical (radial) gradient in the inner Galaxy, which resulted from accretion of primordial gas.
This study is based on high quality astrometric and spectroscopic data from the most recent releases by Gaia and APOGEE. We select $58,882$ thin and thick disk red giants, in the Galactocentric (cylindrical) distance range $5 < R < 13$~kpc and within
Transition type dwarf galaxies are thought to be systems undergoing the process of transformation from a star-forming into a passively evolving dwarf, which makes them particularly suitable to study evolutionary processes driving the existence of dif
We compare the star-formation history and dynamics of the Milky Way (MW) with the properties of distant disk galaxies. During the first ~4 Gyr of its evolution, the MW formed stars with a high star-formation intensity (SFI), Sigma_SFR~0.6 Msun/yr/kpc
In the Milky Way, the thick disk can be defined using individual stellar abundances, kinematics, or age; or geometrically, as stars high above the mid-plane. In nearby galaxies, where only a geometric definition can be used, thick disks appear to hav
We have developed a novel Markov Chain Mote Carlo (MCMC) chemical painting technique to explore possible radial and vertical metallicity gradients for the thick disc progenitor. In our analysis we match an N-body simulation to the data from the Apach