ترغب بنشر مسار تعليمي؟ اضغط هنا

A radial age gradient in the geometrically thick disk of the Milky Way

64   0   0.0 ( 0 )
 نشر من قبل Marie Martig
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In the Milky Way, the thick disk can be defined using individual stellar abundances, kinematics, or age; or geometrically, as stars high above the mid-plane. In nearby galaxies, where only a geometric definition can be used, thick disks appear to have large radial scale-lengths, and their red colors suggest that they are uniformly old. The Milky Ways geometrically thick disk is also radially extended, but it is far from chemically uniform: alpha-enhanced stars are confined within the inner Galaxy. In simulated galaxies, where old stars are centrally concentrated, geometrically thick disks are radially extended, too. Younger stellar populations flare in the simulated disks outer regions, bringing those stars high above the mid-plane. The resulting geometrically thick disks therefore show a radial age gradient, from old in their central regions to younger in their outskirts. Based on our age estimates for a large sample of giant stars in the APOGEE survey, we can now test this scenario for the Milky Way. We find that the geometrically-defined thick disk in the Milky Way has indeed a strong radial age gradient: the median age for red clump stars goes from ~9 Gyr in the inner disk to 5 Gyr in the outer disk. We propose that at least some nearby galaxies could also have thick disks that are not uniformly old, and that geometrically thick disks might be complex structures resulting from different formation mechanisms in their inner and outer parts.



قيم البحث

اقرأ أيضاً

We determine the radial abundance gradient of Cl in the Milky Way from HII regions spectra. For the first time, the Cl/H ratios are computed by simply adding ionic abundances and not using an ionization correction factor (ICF). We use a collection of published very deep spectra of Galactic HII regions. We have re-calculated the physical conditions, ionic and total abundances of Cl and O using the same methodology and updated atomic data for all the objects. We find that the slopes of the radial gradients of Cl and O are identical within the uncertainties: -0.043 dex/kpc. This is consistent with a lockstep evolution of both elements. We obtain that the mean value of the Cl/O ratio across the Galactic disc is log(Cl/O) = -3.42 +/- 0.06. We compare our Cl/H ratios with those determined from Cl++ abundances and using some available ICF schemes of the literature. We find that our total Cl abundances are always lower than the values determined using ICFs, indicating that those correction schemes systematically overestimate the contribution of Cl+ and Cl+++ species to the total Cl abundance. Finally, we propose an empirical ICF(Cl++) to estimate the Cl/H ratio in HII regions.
We analyze 494 main sequence turnoff and subgiant stars from the AMBRE:HARPS survey. These stars have accurate astrometric information from textit{Gaia}/DR1, providing reliable age estimates with relative uncertainties of $pm1-2$ Gyr and allowing pre cise orbital determinations. The sample is split based on chemistry into a low-[Mg/Fe] sequence, which are often identified as thin disk stellar populations, and a high-[Mg/Fe] sequence, which are often associated with the thick disk. We find that the high-[Mg/Fe] chemical sequence has extended star formation for several Gyr and is coeval with the oldest stars of the low-[Mg/Fe] chemical sequence: both the low- and high-[Mg/Fe] sequences were forming stars at the same time. The high-[Mg/Fe] stellar populations are only vertically extended for the oldest, most-metal poor and highest [Mg/Fe] stars. When comparing vertical velocity dispersion for both sequences, the high-[Mg/Fe] sequence has lower velocity dispersion than the low-[Mg/Fe] sequence for stars of similar age. Identifying either group as thin or thick disk based on chemistry is misleading. The stars belonging to the high-[Mg/Fe] sequence have perigalacticons that originate in the inner disk, while the perigalacticons of stars on the low-[Mg/Fe] sequence are generally around the solar neighborhood. From the orbital properties of the stars, the high-and low-[Mg/Fe] sequences are most likely a reflection of the chemical enrichment history of the inner and outer disk populations; radial mixing causes both populations to be observed in situ at the solar position. Based on these results, we emphasize that it is important to be clear in defining what populations are being referenced when using the terms thin and thick disk, and that ideally the term thick disk should be reserved for purely geometric definitions to avoid confusion and be consistent with definitions in external galaxies.
We use the extensive $Gaia$ Data Release 2 set of Long Period Variables to select a sample of Oxygen-rich Miras throughout the Milky Way disk and bulge for study. Exploiting the relation between Mira pulsation period and stellar age/chemistry, we sli ce the stellar density of the Galactic disk and bulge as a function of period. We find the morphology of both components evolves as a function of stellar age/chemistry with the stellar disk being stubby at old ages, becoming progressively thinner and more radially extended at younger stellar ages, consistent with the picture of inside-out and upside-down formation of the Milky Ways disk. We see evidence of a perturbed disk, with large-scale stellar over-densities visible both in and away from the stellar plane. We find the bulge is well modelled by a triaxial boxy distribution with an axis ratio of $sim [1:0.4:0.3]$. The oldest of the Miras ($sim$ 9-10 Gyr) show little bar-like morphology, whilst the younger stars appear inclined at a viewing angle of $sim 21^{circ}$ to the Sun-Galactic Centre line. This suggests that bar formation and buckling took place 8-9 Gyr ago, with the older Miras being hot enough to avoid being trapped by the growing bar. We find the youngest Miras to exhibit a strong peanut morphology, bearing the characteristic X-shape of an inclined bar structure.
We study the relationship between age, metallicity, and alpha-enhancement of FGK stars in the Galactic disk. The results are based upon the analysis of high-resolution UVES spectra from the Gaia-ESO large stellar survey. We explore the limitations of the observed dataset, i.e. the accuracy of stellar parameters and the selection effects that are caused by the photometric target preselection. We find that the colour and magnitude cuts in the survey suppress old metal-rich stars and young metal-poor stars. This suppression may be as high as 97% in some regions of the age-metallicity relationship. The dataset consists of 144 stars with a wide range of ages from 0.5 Gyr to 13.5 Gyr, Galactocentric distances from 6 kpc to 9.5 kpc, and vertical distances from the plane 0 < |Z| < 1.5 kpc. On this basis, we find that i) the observed age-metallicity relation is nearly flat in the range of ages between 0 Gyr and 8 Gyr; ii) at ages older than 9 Gyr, we see a decrease in [Fe/H] and a clear absence of metal-rich stars; this cannot be explained by the survey selection functions; iii) there is a significant scatter of [Fe/H] at any age; and iv) [Mg/Fe] increases with age, but the dispersion of [Mg/Fe] at ages > 9 Gyr is not as small as advocated by some other studies. In agreement with earlier work, we find that radial abundance gradients change as a function of vertical distance from the plane. The [Mg/Fe] gradient steepens and becomes negative. In addition, we show that the inner disk is not only more alpha-rich compared to the outer disk, but also older, as traced independently by the ages and Mg abundances of stars.
The Milky Way disk consists of two prominent components - a thick, alpha-rich, low-metallicity component and a thin, metal-rich, low-alpha component. External galaxies have been shown to contain thin and thick disk components, but whether distinct co mponents in the [$alpha$/Fe]-[Z/H] plane exist in other Milky Way-like galaxies is not yet known. We present VLT-MUSE observations of UGC 10738, a nearby, edge-on Milky Way-like galaxy. We demonstrate through stellar population synthesis model fitting that UGC 10738 contains alpha-rich and alpha-poor stellar populations with similar spatial distributions to the same components in the Milky Way. We discuss how the finding that external galaxies also contain chemically distinct disk components may act as a significant constraint on the formation of the Milky Ways own thin and thick disk.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا