ﻻ يوجد ملخص باللغة العربية
Spin polarization of a topological surface state for GeBi$_2$Te$_4$, the newly discovered three-dimensional topological insulator, has been studied by means of the state of the art spin- and angle-resolved photoemission spectroscopy. It has been revealed that the disorder in the crystal has a minor effect on the surface state spin polarization and it exceeds 75% near the Dirac point in the bulk energy gap region ($sim$180 meV). This new finding for GeBi$_{2}$Te$_{4}$ promises not only to realize a highly spin polarized surface isolated transport but to add new functionality to its thermoelectric and thermomagnetic properties.
The discovery of topological insulator phase has ignited massive research interests in novel quantum materials. Topological insulators with superconductivity further invigorate the importance of materials providing the platform to study the interplay
The unoccupied part of the band structure in the magnetic topological insulator MnBi$_2$Te$_4$ is studied by first-principles calculations. We find a second, unoccupied topological surface state with similar electronic structure to the celebrated occ
Helical spin textures with the marked spin polarizations of topological surface states have been firstly unveiled by the state-of-the-art spin- and angle-resolved photoemission spectroscopy for two promising topological insulators Bi$_2$Te$_2$Se and
We report high-resolution spin-resolved photoemission spectroscopy (Spin-ARPES) measurements on the parent compound Sb of the first discovered 3D topological insulator Bi{1-x}Sb{x} [D. Hsieh et al., Nature 452, 970 (2008) Submitted 2007]. By modulati
The helical Dirac fermions on the surface of topological insulators host novel relativistic quantum phenomena in solids. Manipulating spins of topological surface state (TSS) represents an essential step towards exploring the theoretically predicted