ﻻ يوجد ملخص باللغة العربية
The unoccupied part of the band structure in the magnetic topological insulator MnBi$_2$Te$_4$ is studied by first-principles calculations. We find a second, unoccupied topological surface state with similar electronic structure to the celebrated occupied topological surface state. This state is energetically located approximate $1.6$ eV above the occupied Dirac surface state around $Gamma$ point, which permit it to be directly observed by the two-photon angle-resolved photoemission spectroscopy. We propose a unified effective model for the occupied and unoccupied surface states. Due to the direct optical coupling between these two surface states, we further propose two optical effects to detect the unoccupied surface state. One is the polar Kerr effect in odd layer from nonvanishing ac Hall conductance $sigma_{xy}(omega)$, and the other is higher-order terahertz-sideband generation in even layer, where the non-vanishining Berry curvature of the unoccupied surface state is directly observed from the giant Faraday rotation of optical emission.
The recent discovery of antiferromagnetic (AFM) topological insulator (TI) MnBi$_2$Te$_4$ has triggered great research efforts on exploring novel magnetic topological physics. Based on first-principles calculations, we find that the manipulation of m
Surface magnetism and its correlation with the electronic structure are critical to understand the gapless topological surface state in the intrinsic magnetic topological insulator MnBi$_2$Te$_4$. Here, using static and time resolved angle-resolved p
Topological states of quantum matter have attracted great attention in condensed matter physics and materials science. The study of time-reversal-invariant (TRI) topological states in quantum materials has made tremendous progress in both theories an
The intrinsic antiferromagnetic topological insulator MnBi2Te4 provides an ideal platform for exploring exotic topological quantum phenomena. Recently, the Chern insulator and axion insulator phases have been realized in few-layer MnBi2Te4 devices at
Recently, the intrinsic magnetic topological insulator MnBi$_2$Te$_4$ has attracted great attention. It has an out-of-plane antiferromagnetic order, which is believed to open a sizable energy gap in the surface states. This gap, however, was not alwa