ﻻ يوجد ملخص باللغة العربية
The helical Dirac fermions on the surface of topological insulators host novel relativistic quantum phenomena in solids. Manipulating spins of topological surface state (TSS) represents an essential step towards exploring the theoretically predicted exotic states related to time reversal symmetry (TRS) breaking via magnetism or magnetic field. Understanding Zeeman effect of TSS and determining its g-factor are pivotal for such manipulations in the latter form of TRS breaking. Here, we report those direct experimental observations in Bi2Se3 and Sb2Te2Se by spectroscopic imaging scanning tunneling microscopy. The Zeeman shifting of zero mode Landau level is identified unambiguously by judiciously excluding the extrinsic influences associated with the non-linearity in the TSS band dispersion and the spatially varying potential. The g-factors of TSS in Bi2Se3 and Sb2Te2Se are determined to be 18 and -6, respectively. This remarkable material dependence opens a new route to control the spins in the TSS.
The discovery of topological insulator phase has ignited massive research interests in novel quantum materials. Topological insulators with superconductivity further invigorate the importance of materials providing the platform to study the interplay
In the present paper, we propose a new way to classify centrosymmetric metals by studying the Zeeman effect caused by an external magnetic field described by the momentum dependent g-factor tensor on the Fermi surfaces. Nontrivial U(1) Berrys phase a
The prediction of non-trivial topological electronic states hosted by half-Heusler compounds makes them prime candidates for discovering new physics and devices as they harbor a variety of electronic ground states including superconductivity, magneti
Initiated by the discovery of topological insulators, topologically non-trivial materials, more specifically topological semimetals and metals have emerged as new frontiers in the field of quantum materials. In this work, we perform a systematic meas
Topological nodal-line semimetals (NLSs) are unique materials, which harbor one-dimensional line nodes along with the so-called drumhead surface states arising from nearly dispersionless two dimensional surface bands. However, a direct observation of