ترغب بنشر مسار تعليمي؟ اضغط هنا

The Strikingly Similar Relation between Satellite and Central Galaxies and Their Dark Matter Halos Since z=2

150   0   0.0 ( 0 )
 نشر من قبل Douglas Watson
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Douglas F. Watson




اسأل ChatGPT حول البحث

Satellite galaxies in rich clusters are subject to numerous physical processes that can significantly influence their evolution. However, the typical L* satellite galaxy resides in much lower mass galaxy groups, where the processes capable of altering their evolution are generally weaker and have had less time to operate. To investigate the extent to which satellite and central galaxy evolution differs, we separately model the stellar mass - halo mass (M* -Mh) relation for these two populations over the redshift interval 0 < z < 1. This relation for central galaxies is constrained by the galaxy stellar mass function while the relation for satellite galaxies is constrained against recent measurements of the galaxy two-point correlation function (2PCF). At z ~ 0 the satellites, on average, have ~10% larger stellar masses at fixed peak subhalo mass compared to central galaxies of the same halo mass. This is required in order to reproduce the observed stellar mass-dependent 2PCF and satellite fractions. At low masses our model slightly under-predicts the correlation function at ~1 Mpc scales. At z ~ 1 the satellite and central galaxy M*-Mh relations are consistent within the errors, and the model provides an excellent fit to the clustering data. At present, the errors on the clustering data at z ~ 2 are too large to constrain the satellite model. A simple model in which satellite and central galaxies share the same M*-Mh relation is able to reproduce the extant z ~ 2 clustering data. We speculate that the striking similarity between the satellite and central galaxy M*-Mh relations since z ~ 2 arises because the central galaxy relation evolves very weakly with time and because the stellar mass of the typical satellite galaxy has not changed significantly since it was accreted. [Abridged]



قيم البحث

اقرأ أيضاً

200 - Risa H. Wechsler 2018
In our modern understanding of galaxy formation, every galaxy forms within a dark matter halo. The formation and growth of galaxies over time is connected to the growth of the halos in which they form. The advent of large galaxy surveys as well as hi gh-resolution cosmological simulations has provided a new window into the statistical relationship between galaxies and halos and its evolution. Here we define this galaxy-halo connection as the multi-variate distribution of galaxy and halo properties that can be derived from observations and simulations. This connection provides a key test of physical galaxy formation models; it also plays an essential role in constraints of cosmological models using galaxy surveys and in elucidating the properties of dark matter using galaxies. We review techniques for inferring the galaxy-halo connection and the insights that have arisen from these approaches. Some things we have learned are that galaxy formation efficiency is a strong function of halo mass; at its peak in halos around a pivot halo mass of 10^12 Msun, less than 20% of the available baryons have turned into stars by the present day; the intrinsic scatter in galaxy stellar mass is small, less than 0.2 dex at a given halo mass above this pivot mass; below this pivot mass galaxy stellar mass is a strong function of halo mass; the majority of stars over cosmic time were formed in a narrow region around this pivot mass. We also highlight key open questions about how galaxies and halos are connected, including understanding the correlations with secondary properties and the connection of these properties to galaxy clustering.
354 - Matthieu Schaller 2015
We use the Evolution and Assembly of GaLaxies and their Environments ( EAGLE ) suite of hydrodynamical cosmological simulations to measure offsets between the centres of stellar and dark matter components of galaxies. We find that the vast majority ( >95%) of the simulated galaxies display an offset smaller than the gravitational softening length of the simulations (Plummer-equivalent $epsilon = 700$ pc), both for field galaxies and satellites in clusters and groups. We also find no systematic trailing or leading of the dark matter along a galaxys direction of motion. The offsets are consistent with being randomly drawn from a Maxwellian distribution with $sigma leq 196$ pc. Since astrophysical effects produce no feasible analogues for the $1.62^{+0.47}_{-0.49}$ kpc offset recently observed in Abell 3827, the observational result is in tension with the collisionless cold dark matter model assumed in our simulations.
Using the self-consistent modeling of the conditional stellar mass functions across cosmic time by Yang et al. (2012), we make model predictions for the star formation histories (SFHs) of {it central} galaxies in halos of different masses. The model requires the following two key ingredients: (i) mass assembly histories of central and satellite galaxies, and (ii) local observational constraints of the star formation rates of central galaxies as function of halo mass. We obtain a universal fitting formula that describes the (median) SFH of central galaxies as function of halo mass, galaxy stellar mass and redshift. We use this model to make predictions for various aspects of the star formation rates of central galaxies across cosmic time. Our main findings are the following. (1) The specific star formation rate (SSFR) at high $z$ increases rapidly with increasing redshift [$propto (1+z)^{2.5}$] for halos of a given mass and only slowly with halo mass ($propto M_h^{0.12}$) at a given $z$, in almost perfect agreement with the specific mass accretion rate of dark matter halos. (2) The ratio between the star formation rate (SFR) in the main-branch progenitor and the final stellar mass of a galaxy peaks roughly at a constant value, $sim 10^{-9.3} h^2 {rm yr}^{-1}$, independent of halo mass or the final stellar mass of the galaxy. However, the redshift at which the SFR peaks increases rapidly with halo mass. (3) More than half of the stars in the present-day Universe were formed in halos with $10^{11.1}msunh < M_h < 10^{12.3}msunh$ in the redshift range $0.4 < z < 1.9$. (4) ... [abridged]
We present direct observational evidence for star formation quenching in galaxy groups in the redshift range 0<z<2.5. We utilize a large sample of nearly 6000 groups, selected by fixed cumulative number density from three photometric catalogs, to fol low the evolving quiescent fractions of central and satellite galaxies over roughly 11 Gyr. At z~0, central galaxies in our sample range in stellar mass from Milky Way/M31 analogs (M=6.5x10^10 Msolar) to nearby massive ellipticals (M=1.5x10^11 Msolar). Satellite galaxies in the same groups reach masses as low as twice that of the Large Magellanic Cloud (M=6.5x10^9 Msolar). Using statistical background subtraction, we measure the average rest-frame colors of galaxies in our groups and calculate the evolving quiescent fractions of centrals and satellites over seven redshift bins. Our analysis shows clear evidence for star formation quenching in group halos, with a different quenching onset for centrals and their satellite galaxies. Using halo mass estimates for our central galaxies, we find that star formation shuts off in centrals when typical halo masses reach between 10^12 and 10^13 Msolar, consistent with predictions from the halo quenching model. In contrast, satellite galaxies in the same groups most likely undergo quenching by environmental processes, whose onset is delayed with respect to their central galaxy. Although star formation is suppressed in all galaxies over time, the processes that govern quenching are different for centrals and satellites. While mass plays an important role in determining the star formation activity of central galaxies, quenching in satellite galaxies is dominated by the environment in which they reside.
Dark-matter halos grown in cosmological simulations appear to have central NFW-like density cusps with mean values of $dlogrho/dlog r approx -1$, and some dispersion, which is generally parametrized by the varying index $alpha$ in the Einasto density profile fitting function. Non-universality in profile shapes is also seen in observed galaxy clusters and possibly dwarf galaxies. Here we show that non-universality, at any given mass scale, is an intrinsic property of DARKexp, a theoretically derived model for collisionless self-gravitating systems. We demonstrate that DARKexp - which has only one shape parameter, $phi_0$ - fits the dispersion in profile shapes of massive simulated halos as well as observed clusters very well. DARKexp also allows for cored dark-matter profiles, such as those found for dwarf spheroidal galaxies. We provide approximate analytical relations between DARKexp $phi_0$, Einasto $alpha$, or the central logarithmic slope in the Dehnen-Tremaine analytical $gamma$-models. The range in halo parameters reflects a substantial variation in the binding energies per unit mass of dark-matter halos.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا