ترغب بنشر مسار تعليمي؟ اضغط هنا

Synchronization in the presence of distributed delays

138   0   0.0 ( 0 )
 نشر من قبل Sa\\'ul Ares
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study systems of identical coupled oscillators introducing a distribution of delay times in the coupling. For arbitrary network topologies, we show that the frequency and stability of the fully synchronized states depend only on the mean of the delay distribution. However, synchronization dynamics is sensitive to the shape of the distribution. In the presence of coupling delays, the synchronization rate can be maximal for a specific value of the coupling strength.



قيم البحث

اقرأ أيضاً

We present a comprehensive study of the destruction of quantum multifractality in the presence of perturbations. We study diverse representative models displaying multifractality, including a pseudointegrable system, the Anderson model and a random m atrix model. We apply several types of natural perturbations which can be relevant for experimental implementations. We construct an analytical theory for certain cases, and perform extensive large-scale numerical simulations in other cases. The data are analyzed through refined methods including double scaling analysis. Our results confirm the recent conjecture that multifractality breaks down following two scenarios. In the first one, multifractality is preserved unchanged below a certain characteristic length which decreases with perturbation strength. In the second one, multifractality is affected at all scales and disappears uniformly for a strong enough perturbation. Our refined analysis shows that subtle variants of these scenarios can be present in certain cases. This study could guide experimental implementations in order to observe quantum multifractality in real systems.
We study the synchronization of chaotic units connected through time-delayed fluctuating interactions. We focus on small-world networks of Bernoulli and Logistic units with a fixed chiral backbone. Comparing the synchronization properties of static a nd fluctuating networks, we find that random network alternations can enhance the synchronizability. Synchronized states appear to be maximally stable when fluctuations are much faster than the time-delay, even when the instantaneous state of the network does not allow synchronization. This enhancing effect disappears for very slow fluctuations. For fluctuation time scales of the order of the time-delay, a desynchronizing resonance is reported. Moreover, we observe characteristic oscillations, with a periodicity related to the coupling delay, as the system approaches or drifts away from the synchronized state.
We investigate the stability of synchronized states in delay-coupled networks where synchronization takes place in groups of different local dynamics or in cluster states in networks with identical local dynamics. Using a master stability approach, w e find that the master stability function shows a discrete rotational symmetry depending on the number of groups. The coupling matrices that permit solutions on group or cluster synchronization manifolds show a very similar symmetry in their eigenvalue spectrum, which helps to simplify the evaluation of the master stability function. Our theory allows for the characterization of stability of different patterns of synchronized dynamics in networks with multiple delay times, multiple coupling functions, but also with multiple kinds of local dynamics in the networks nodes. We illustrate our results by calculating stability in the example of delay-coupled semiconductor lasers and in a model for neuronal spiking dynamics.
Spectral properties of Coupled Map Lattices are described. Conditions for the stability of spatially homogeneous chaotic solutions are derived using linear stability analysis. Global stability analysis results are also presented. The analytical resul ts are supplemented with numerical examples. The quadratic map is used for the site dynamics with different coupling schemes such as global coupling, nearest neighbor coupling, intermediate range coupling, random coupling, small world coupling and scale free coupling.
We use symbolic dynamics to study discrete-time dynamical systems with multiple time delays. We exploit the concept of avoiding sets, which arise from specific non-generating partitions of the phase space and restrict the occurrence of certain symbol sequences related to the characteristics of the dynamics. In particular, we show that the resulting forbidden sequences are closely related to the time delays in the system. We present two applications to coupled map lattices, namely (1) detecting synchronization and (2) determining unknown values of the transmission delays in networks with possibly directed and weighted connections and measurement noise. The method is applicable to multi-dimensional as well as set-valued maps, and to networks with time-varying delays and connection structure.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا