ﻻ يوجد ملخص باللغة العربية
Spectral properties of Coupled Map Lattices are described. Conditions for the stability of spatially homogeneous chaotic solutions are derived using linear stability analysis. Global stability analysis results are also presented. The analytical results are supplemented with numerical examples. The quadratic map is used for the site dynamics with different coupling schemes such as global coupling, nearest neighbor coupling, intermediate range coupling, random coupling, small world coupling and scale free coupling.
We investigate the stability of synchronized states in delay-coupled networks where synchronization takes place in groups of different local dynamics or in cluster states in networks with identical local dynamics. Using a master stability approach, w
We show that two coupled map lattices that are mutually coupled to one another with a delay can display zero delay synchronization if they are driven by a third coupled map lattice. We analytically estimate the parametric regimes that lead to synchro
We study the synchronization of chaotic units connected through time-delayed fluctuating interactions. We focus on small-world networks of Bernoulli and Logistic units with a fixed chiral backbone. Comparing the synchronization properties of static a
We use symbolic dynamics to study discrete-time dynamical systems with multiple time delays. We exploit the concept of avoiding sets, which arise from specific non-generating partitions of the phase space and restrict the occurrence of certain symbol
The spatiotemporal dynamics of Lyapunov vectors (LVs) in spatially extended chaotic systems is studied by means of coupled-map lattices. We determine intrinsic length scales and spatiotemporal correlations of LVs corresponding to the leading unstable