ﻻ يوجد ملخص باللغة العربية
We investigate the stability of synchronized states in delay-coupled networks where synchronization takes place in groups of different local dynamics or in cluster states in networks with identical local dynamics. Using a master stability approach, we find that the master stability function shows a discrete rotational symmetry depending on the number of groups. The coupling matrices that permit solutions on group or cluster synchronization manifolds show a very similar symmetry in their eigenvalue spectrum, which helps to simplify the evaluation of the master stability function. Our theory allows for the characterization of stability of different patterns of synchronized dynamics in networks with multiple delay times, multiple coupling functions, but also with multiple kinds of local dynamics in the networks nodes. We illustrate our results by calculating stability in the example of delay-coupled semiconductor lasers and in a model for neuronal spiking dynamics.
We study the synchronization of chaotic units connected through time-delayed fluctuating interactions. We focus on small-world networks of Bernoulli and Logistic units with a fixed chiral backbone. Comparing the synchronization properties of static a
Spectral properties of Coupled Map Lattices are described. Conditions for the stability of spatially homogeneous chaotic solutions are derived using linear stability analysis. Global stability analysis results are also presented. The analytical resul
We consider networks of delay-coupled Stuart-Landau oscillators. In these systems, the coupling phase has been found to be a crucial control parameter. By proper choice of this parameter one can switch between different synchronous oscillatory states
We study the dynamics of networks with coupling delay, from which the connectivity changes over time. The synchronization properties are shown to depend on the interplay of three time scales: the internal time scale of the dynamics, the coupling dela
We derive rigorous conditions for the synchronization of all-optically coupled lasers. In particular, we elucidate the role of the optical coupling phases for synchronizability by systematically discussing all possible network motifs containing two l