ﻻ يوجد ملخص باللغة العربية
This Letter, i.e. for the first time, proves that a general invariant velocity is originated from the principle of special relativity, namely, discovers the origin of the general invariant velocity, and when the general invariant velocity is taken as the invariant light velocity in current theories, we get the corresponding special theory of relativity. Further, this Letter deduces triple special theories of relativity in cosmology, and cancels the invariant presumption of light velocity, it is proved that there exists a general constant velocity K determined by the experiments in cosmology, for K > 0, = 0 and < 0, they correspond to three kinds of possible relativistic theories in which the special theory of relativity is naturally contained for the special case of K > 0, and this Letter gives a prediction that, for K < 0, there is another likely case satisfying the principle of special relativity for some special physical systems in cosmology, in which the relativistic effects observed would be that the moving body would be lengthened, moving clock would be quickened. And the point of K = 0 is a bifurcation point, through which it gives out three types of possible universes in the cosmology (or multiverse). When a kind of matter with the maximally invariant velocity that may be superluminal or equal to light velocity is determined by experiments, then the invariant velocity can be taken as one of the general invariant velocity achieved in this Letter, then all results of current physical theories are consistent by utilizing this Letters theory.
We review the status of testing the principle of equivalence and Lorentz invariance from atmospheric and solar neutrino experiments.
The goal of this lecture is to introduce the student to the theory of Special Relativity. Not to overload the content with mathematics, the author will stick to the simplest cases; in particular only reference frames using Cartesian coordinates and t
It is shown how a Doubly-Special Relativity model can emerge from a quantum cellular automaton description of the evolution of countably many interacting quantum systems. We consider a one-dimensional automaton that spawns the Dirac evolution in the
The hodograph of a non-relativistic particle motion in Euclidean space is the curve described by its momentum vector. For a general central orbit problem the hodograph is the inverse of the pedal curve of the orbit, (i.e. its polar reciprocal), rotat
We show that depending on the direction of deformation of $kappa$-Poincare algebra (time-like, space-like, or light-like) the associated phase spaces of single particle in Doubly Special Relativity theories have the energy-momentum spaces of the form