ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum Walks with Non-Orthogonal Position States

118   0   0.0 ( 0 )
 نشر من قبل Robert Matjeschk
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Quantum walks have by now been realized in a large variety of different physical settings. In some of these, particularly with trapped ions, the walk is implemented in phase space, where the corresponding position states are not orthogonal. We develop a general description of such a quantum walk and show how to map it into a standard one with orthogonal states, thereby making available all the tools developed for the latter. This enables a variety of experiments, which can be implemented with smaller step sizes and more steps. Tuning the non-orthogonality allows for an easy preparation of extended states such as momentum eigenstates, which travel at a well-defined speed with low dispersion. We introduce a method to adjust their velocity by momentum shifts, which allows to investigate intriguing effects such as the analog of Bloch oscillations.



قيم البحث

اقرأ أيضاً

461 - T. Douce , A. Ketterer , A. Keller 2014
We propose a classical to quantum information encoding system using non--orthogonal states and apply it to the problem of searching an element in a quantum list. We show that the proposed encoding scheme leads to an exponential gain in terms of quant um resources and, in some cases, to an exponential gain in the number of runs of the protocol. In the case where the output of the search algorithm is a quantum state with some particular physical property, the searched state is found with a single query to the introduced oracle. If the obtained quantum state must be converted back to classical information, our protocol demands a number of repetitions that scales polynomially with the number of qubits required to encode a classical string.
66 - Seiseki Akibue , Go Kato , 2018
The indistinguishability of non-orthogonal pure states lies at the heart of quantum information processing. Although the indistinguishability reflects the impossibility of measuring complementary physical quantities by a single measurement, we demons trate that the distinguishability can be perfectly retrieved simply with the help of posterior classical partial information. We demonstrate this by showing an ensemble of non-orthogonal pure states such that a state randomly sampled from the ensemble can be perfectly identified by a single measurement with help of the post-processing of the measurement outcomes and additional partial information about the sampled state, i.e., the label of subensemble from which the state is sampled. When an ensemble consists of two subensembles, we show that the perfect distinguishability of the ensemble with the help of the post-processing can be restated as a matrix-decomposition problem. Furthermore, we give the analytical solution for the problem when both subensembles consist of two states.
We study a quantum walker on a one-dimensional lattice with a single defect site characterized by a phase. The spread and localization of discrete-time quantum walks starting at the impurity site are affected by the appearance of bound states and the ir reflection symmetry. We quantify the localization in terms of an effective localization length averaged over all eigenstates and an effective participation ratio after time evolution averaged over all initial states. We observe that the reduced coin system dynamics undergoes oscillations in the long-time limit, the frequencies of which are related to the unitary sublattice operator and the bound state quasi-energy differences. The oscillations give rise to non-Markovian evolution, which we quantify using the trace distance and entanglement based measures of non-Markovianity. Indeed, we reveal that the degree of the non-Markovian behavior is closely related to the emergence of bound states due to the phase impurity. We also show that the considered measures give qualitatively different results depending on the number and symmetries of supported bound states. Finally, comparing localization and non-Markovianity measures, we demonstrate that the degree of non-Markovianity becomes maximum when the walker is most localized in position space.
An important task for quantum information processing is optimal discrimination between two non-orthogonal quantum states, which until now has only been realized optically. Here, we present and compare experimental realizations of optimal quantum meas urements for distinguishing between two non-orthogonal quantum states encoded in a single ^14 N nuclear spin. Implemented measurement schemes are the minimum-error measurement (known as Helstrom measurement), unambiguous state discrimination using a standard projective measurement, and optimal unambiguous state discrimination (known as IDP measurement), which utilizes a three-dimensional Hilbert space. Measurement efficiencies are found to be above 80% for all schemes and reach a value of 90% for the IDP measurement
197 - Dmitry Solenov 2015
Non-local higher-energy auxiliary states have been successfully used to entangle pairs of qubits in different quantum computing systems. Typically a longer-span non-local state or sequential application of few-qubit entangling gates are needed to pro duce a non-trivial multiqubit gate. In many cases a single non-local state that span over the entire system is difficult to use due to spectral crowding or impossible to have. At the same time, many multiqubit systems can naturally develop a network of multiple non-local higher-energy states that span over few qubits each. We show that continuous time quantum walks can be used to address this problem by involving multiple such states to perform local and entangling operations concurrently on many qubits. This introduces an alternative approach to multiqubit gate compression based on available physical resources. We formulate general requirements for such walks and discuss configurations of non-local auxiliary states that can emerge in quantum computing architectures based on self-assembled quantum dots, defects in diamond, and superconducting qubits, as examples. Specifically, we discuss a scalable multiqubit quantum register constructed as a single chain with nearest-neighbor interactions. We illustrate how quantum walks can be configured to perform single-, two- and three-qubit gates, including Hadamard, Control-NOT, and Toffoli gates. Continuous time quantum walks on graphs involved in these gates are investigated.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا