ﻻ يوجد ملخص باللغة العربية
Quantum walks have by now been realized in a large variety of different physical settings. In some of these, particularly with trapped ions, the walk is implemented in phase space, where the corresponding position states are not orthogonal. We develop a general description of such a quantum walk and show how to map it into a standard one with orthogonal states, thereby making available all the tools developed for the latter. This enables a variety of experiments, which can be implemented with smaller step sizes and more steps. Tuning the non-orthogonality allows for an easy preparation of extended states such as momentum eigenstates, which travel at a well-defined speed with low dispersion. We introduce a method to adjust their velocity by momentum shifts, which allows to investigate intriguing effects such as the analog of Bloch oscillations.
We propose a classical to quantum information encoding system using non--orthogonal states and apply it to the problem of searching an element in a quantum list. We show that the proposed encoding scheme leads to an exponential gain in terms of quant
The indistinguishability of non-orthogonal pure states lies at the heart of quantum information processing. Although the indistinguishability reflects the impossibility of measuring complementary physical quantities by a single measurement, we demons
We study a quantum walker on a one-dimensional lattice with a single defect site characterized by a phase. The spread and localization of discrete-time quantum walks starting at the impurity site are affected by the appearance of bound states and the
An important task for quantum information processing is optimal discrimination between two non-orthogonal quantum states, which until now has only been realized optically. Here, we present and compare experimental realizations of optimal quantum meas
Non-local higher-energy auxiliary states have been successfully used to entangle pairs of qubits in different quantum computing systems. Typically a longer-span non-local state or sequential application of few-qubit entangling gates are needed to pro