ﻻ يوجد ملخص باللغة العربية
Non-local higher-energy auxiliary states have been successfully used to entangle pairs of qubits in different quantum computing systems. Typically a longer-span non-local state or sequential application of few-qubit entangling gates are needed to produce a non-trivial multiqubit gate. In many cases a single non-local state that span over the entire system is difficult to use due to spectral crowding or impossible to have. At the same time, many multiqubit systems can naturally develop a network of multiple non-local higher-energy states that span over few qubits each. We show that continuous time quantum walks can be used to address this problem by involving multiple such states to perform local and entangling operations concurrently on many qubits. This introduces an alternative approach to multiqubit gate compression based on available physical resources. We formulate general requirements for such walks and discuss configurations of non-local auxiliary states that can emerge in quantum computing architectures based on self-assembled quantum dots, defects in diamond, and superconducting qubits, as examples. Specifically, we discuss a scalable multiqubit quantum register constructed as a single chain with nearest-neighbor interactions. We illustrate how quantum walks can be configured to perform single-, two- and three-qubit gates, including Hadamard, Control-NOT, and Toffoli gates. Continuous time quantum walks on graphs involved in these gates are investigated.
In this paper we present a model exhibiting a new type of continuous-time quantum walk (as a quantum mechanical transport process) on networks, which is described by a non-Hermitian Hamiltonian possessing a real spectrum. We call it pseudo-Hermitian
Quantum walks have by now been realized in a large variety of different physical settings. In some of these, particularly with trapped ions, the walk is implemented in phase space, where the corresponding position states are not orthogonal. We develo
We propose a definition for the Polya number of continuous-time quantum walks to characterize their recurrence properties. The definition involves a series of measurements on the system, each carried out on a different member from an ensemble in orde
We address continuous-time quantum walks on graphs in the presence of time- and space-dependent noise. Noise is modeled as generalized dynamical percolation, i.e. classical time-dependent fluctuations affecting the tunneling amplitudes of the walker.
It is demonstrated that in gate-based quantum computing architectures quantum walk is a natural mathematical description of quantum gates. It originates from field-matter interaction driving the system, but is not attached to specific qubit designs a