ﻻ يوجد ملخص باللغة العربية
We study a quantum walker on a one-dimensional lattice with a single defect site characterized by a phase. The spread and localization of discrete-time quantum walks starting at the impurity site are affected by the appearance of bound states and their reflection symmetry. We quantify the localization in terms of an effective localization length averaged over all eigenstates and an effective participation ratio after time evolution averaged over all initial states. We observe that the reduced coin system dynamics undergoes oscillations in the long-time limit, the frequencies of which are related to the unitary sublattice operator and the bound state quasi-energy differences. The oscillations give rise to non-Markovian evolution, which we quantify using the trace distance and entanglement based measures of non-Markovianity. Indeed, we reveal that the degree of the non-Markovian behavior is closely related to the emergence of bound states due to the phase impurity. We also show that the considered measures give qualitatively different results depending on the number and symmetries of supported bound states. Finally, comparing localization and non-Markovianity measures, we demonstrate that the degree of non-Markovianity becomes maximum when the walker is most localized in position space.
Quantum walks have by now been realized in a large variety of different physical settings. In some of these, particularly with trapped ions, the walk is implemented in phase space, where the corresponding position states are not orthogonal. We develo
Recently remarkable progress in quantum technology has been witnessed. In view of this it is important to investigate an open quantum system as a model of such quantum devices. Quantum devices often require extreme conditions such as very low tempera
Open quantum systems exhibit a rich phenomenology, in comparison to closed quantum systems that evolve unitarily according to the Schrodinger equation. The dynamics of an open quantum system are typically classified into Markovian and non-Markovian,
Detuned systems can spontaneously achieve a synchronous dynamics and display robust quantum correlations in different local and global dissipation regimes. Beyond the Markovian limit, information backflow from the environment becomes a crucial mechan
To quantify non-Markovianity of tripartite quantum states from an operational viewpoint, we introduce a class $Omega^*$ of operations performed by three distant parties. A tripartite quantum state is a free state under $Omega^*$ if and only if it is