ترغب بنشر مسار تعليمي؟ اضغط هنا

Nuclear Spin Relaxation of Very Dilute 3He impurities in Solid 4He

151   0   0.0 ( 0 )
 نشر من قبل Sung Su Kim
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report measurements of the nuclear spin-lattice and spin-spin relaxation times of very dilute 3He in solid 4He in the temperature range 0.01 leq T leq 0.5 K for densities where anomalies have been observed in torsional oscillator and shear modulus measurements. We compare the results with the values of the relaxation times reported by other observers for higher concentrations and the theory of Landesman that takes into account the elastic properties of the 4He lattice. A sharp increase in the magnitude of the nuclear spin-lattice relaxation times compared to the the classical Landesman theory is observed close to the temperatures where the torsional and shear modulus anomalies are observed. The NMR results suggest that the tunneling of 3He impurities in the atomic-scale elastic distortion is affected by the same processes that give rise to the macroscopic elastic dissipation anomalies.



قيم البحث

اقرأ أيضاً

227 - S. S. Kim , C. Huan , L. Yin 2010
The dynamics of 3He atoms in solid 4He have been investigated by measuring the NMR relaxation times T1, T2 in the region where a significant non-classical rotational inertia fraction (NCRIF) has been reported. For 3He concentrations x3 = 16 ppm and 2 4 ppm, changes are observed for both the spin-lattice relaxation time T1 and the spin-spin relaxation time T2 at the temperatures corresponding to the onset of NCRIF and, at lower temperatures, to the 3He-4He phase separation. The magnitudes of T1 and T2 at temperatures above the phase separation agree roughly with existing theory based on the tunneling of 3He impurities in the elastic strain field due to isotopic mismatch. However, a distinct peak in T1 and a less well-resolved feature in T2 are observed near the reported NCRIF onset temperature, in contrast to the temperature-independent relaxation times predicted by the tunneling theory.
160 - S. S. Kim , C. Huan , L. Yin 2013
The lattice dynamics of solid 4He has been explored using pulsed NMR methods to study the motion of 3He impurities in the temperature range where experiments have revealed anomalies attributed to superflow or unexpected viscoelastic properties of the solid 4He lattice. We report the results of measurements of the nuclear spin-lattice and spin-spin relaxation times that measure the fluctuation spectrum at high and low frequencies, respectively, of the 3He motion that results from quantum tunneling in the 4He matrix. The measurements were made for 3He concentrations 16<x_3<2000 ppm. For 3He concentrations x_3 = 16 ppm and 24 ppm, large changes are observed for both the spin-lattice relaxation time T_1 and the spin-spin relaxation time T_2 at temperatures close to those for which the anomalies are observed in measurements of torsional oscillator responses and the shear modulus. These changes in the NMR relaxation rates were not observed for higher 3He concentrations.
Surface waves on both superfluid 3He and 4He were examined with the premise, that these inviscid media would represent ideal realizations for this fluid dynamics problem. The work on 3He is one of the first of its kind, but on 4He it was possible to produce much more complete set of data for meaningful comparison with theoretical models. Most measurements were performed at the zero temperature limit, meaning T < 100 mK for 4He and T ~ 100 {mu}K for 3He. Dozens of surface wave resonances, including up to 11 overtones, were observed and monitored as the liquid depth in the cell was varied. Despite of the wealth of data, perfect agreement with the constructed theoretical models could not be achieved.
The changes that vacancies produce in the properties of hcp solid 4He are studied by means of quantum Monte Carlo methods. Our results show that the introduction of vacancies produces significant changes in the behavior of solid 4He, even when the va cancy concentration is very small. We show that there is an onset temperature where the properties of incommensurate 4He change significantly. Below this temperature, we observe the emergence of off-diagonal long range order and a complete spatial delocalization of the vacancies. This temperature is quite close to the temperature where non-classical rotational inertia has been experimentally observed. Finally, we report results on the influence of vacancies in the elastic properties of hcp 4He at zero temperature.
Spin-lattice relaxation of the nuclear spin system in p-type GaAs is studied using a three-stage experimental protocol including optical pumping and measuring the difference of the nuclear spin polarization before and after a dark interval of variabl e length. This method allows us to measure the spin-lattice relaxation time $T_1$ of optically pumped nuclei in the dark, that is, in the absence of illumination. The measured $T_1$ values fall into the sub-second time range, being three orders of magnitude shorter than in earlier studied n-type GaAs. The drastic difference is further emphasized by magnetic-field and temperature dependences of $T_1$ in p-GaAs, showing no similarity to those in n-GaAs. This unexpected behavior is explained within a developed theoretical model involving quadrupole relaxation of nuclear spins, which is induced by electric fields within closely spaced donor-acceptor pairs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا