ترغب بنشر مسار تعليمي؟ اضغط هنا

A microscopic description of vacancies in solid 4He

113   0   0.0 ( 0 )
 نشر من قبل Jordi Boronat
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The changes that vacancies produce in the properties of hcp solid 4He are studied by means of quantum Monte Carlo methods. Our results show that the introduction of vacancies produces significant changes in the behavior of solid 4He, even when the vacancy concentration is very small. We show that there is an onset temperature where the properties of incommensurate 4He change significantly. Below this temperature, we observe the emergence of off-diagonal long range order and a complete spatial delocalization of the vacancies. This temperature is quite close to the temperature where non-classical rotational inertia has been experimentally observed. Finally, we report results on the influence of vacancies in the elastic properties of hcp 4He at zero temperature.



قيم البحث

اقرأ أيضاً

214 - M. Rossi , R. Rota , E. Vitali 2007
We have investigated the ground state properties of solid $^4$He with the Shadow Path Integral Ground State method. This exact T=0 K projector method allows to describes quantum solids without introducing any a priori equilibrium position. We have fo und that the efficiency in computing off-diagonal properties in the solid phase sensibly improves when the direct sampling of permutations, in principle not required, is introduced. We have computed the exact one-body density matrix (obdm) in large commensurate 4He crystal finding a decreasing condensate fraction with increasing imaginary time of projection, making our result not conclusive on the presence of Bose-Einstein condensation in bulk solid 4He. We can only give an upper bound of 2.5 times 10^-8 on the condensate fraction. We have exploited the SPIGS method to study also 4He crystal containing grain boundaries by computing the related surface energy and the obdm along these defects. We have found that also highly symmetrical grain boundaries have a finite condensate fraction. We have also derived a route for the estimation of the true equilibrium concentration of vacancies x_v in bulk T=0 K solid 4He, which is shown to be finite, x_v=0.0014(1) at the melting density, when computed with the variational shadow wave function technique.
236 - B. Hunt , E. Pratt , V. Gadagkar 2009
Although solid helium-4 (4He) may be a supersolid it also exhibits many phenomena unexpected in that context. We studied relaxation dynamics in the resonance frequency f(T) and dissipation D(T) of a torsional oscillator containing solid 4He. With the appearance of the supersolid state, the relaxation times within f(T) and D(T) began to increase rapidly together. More importantly, the relaxation processes in both D(T) and a component of f(T) exhibited a complex synchronized ultraslow evolution towards equilibrium. Analysis using a generalized rotational susceptibility revealed that, while exhibiting these apparently glassy dynamics, the phenomena were quantitatively inconsistent with a simple excitation freeze-out transition because the variation in f was far too large. One possibility is that amorphous solid 4He represents a new form of supersolid in which dynamical excitations within the solid control the superfluid phase stiffness.
In recent torsional oscillator experiments by Kim and Chan (KC), a decrease of rotational inertia has been observed in solid 4He in porous materials and in a bulk annular channel. This observation strongly suggests the existence of non-classical rota tional inertia (NCRI), i.e. superflow, in solid 4He. In order to study such a possible supersolid phase, we perform torsional oscillator experiments for cylindrical solid 4He samples. We have observed decreases of rotational inertia below 200 mK for two solid samples (pressures P = 4.1 and 3.0 MPa). The observed NCRI fraction at 70 mK is 0.14 %, which is about 1/3 of the fraction observed in the annulus by KC. Our observation is the first experimental confirmation of the possible supersolid finding by KC.
150 - S. S. Kim , C. Huan , L. Yin 2012
We report measurements of the nuclear spin-lattice and spin-spin relaxation times of very dilute 3He in solid 4He in the temperature range 0.01 leq T leq 0.5 K for densities where anomalies have been observed in torsional oscillator and shear modulus measurements. We compare the results with the values of the relaxation times reported by other observers for higher concentrations and the theory of Landesman that takes into account the elastic properties of the 4He lattice. A sharp increase in the magnitude of the nuclear spin-lattice relaxation times compared to the the classical Landesman theory is observed close to the temperatures where the torsional and shear modulus anomalies are observed. The NMR results suggest that the tunneling of 3He impurities in the atomic-scale elastic distortion is affected by the same processes that give rise to the macroscopic elastic dissipation anomalies.
We study the elasticity of perfect 4He at zero-temperature using the diffusion Monte Carlo method and a realistic semi-empirical pairwise potential to describe the He-He interactions. Specifically, we calculate the value of the elastic constants of h cp helium C_{ij} as a function of pressure up to 110 bar. It is found that the pressure dependence of all five non-zero C_{ij} is linear and we provide accurate parametrization of each of them. Our elastic constants results are compared to previous variational calculations and low-temperature measurements and in general notably good agreement is found among them. Furthermore, we report T = 0 results for the Gruneisen parameters, sound velocities and Debye temperature of hcp 4He. This work represents the first of a series of computational studies aimed at thoroughly characterizing the response of solid helium to external stress-strain.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا