ﻻ يوجد ملخص باللغة العربية
The role played by Time in the quantum theory is still mysterious by many aspects. In particular it is not clear today whether the distribution of decay times of unstable particles could be described by a Time Operator. As we shall discuss, different approaches to this problem (one could say interpretations) can be found in the literature on the subject. As we shall show, it is possible to conceive crucial experiments aimed at distinguishing the different approaches, by measuring with accuracy the statistical distribution of decay times of entangled particles. Such experiments can be realized in principle with entangled kaon pairs.
We study the short-time and medium-time behavior of the survival probability in the frame of the $N$-level Friedrichs model. The time evolution of an arbitrary unstable initial state is determined. We show that the survival probability may oscillate
How to understand the set of correlations admissible in nature is one outstanding open problem in the core of the foundations of quantum theory. Here we take a complementary viewpoint to the device-independent approach, and explore the correlations t
Using Bell-inequalities as a tool to explore non-classical physical behaviours, in this paper we analyze what one can expect to find in many-body quantum physics. Concretely, framing the usual correlation scenarios as a concrete spin-lattice, we want
Adiabatic passage is a standard tool for achieving robust transfer in quantum systems. We show that, in the context of driven nonlinear Hamiltonian systems, adiabatic passage becomes highly non-robust when the target is unstable. We show this result
We present the probability preserving description of the decaying particle within the framework of quantum mechanics of open systems taking into account the superselection rule prohibiting the superposition of the particle and vacuum. In our approach