ﻻ يوجد ملخص باللغة العربية
We present the probability preserving description of the decaying particle within the framework of quantum mechanics of open systems taking into account the superselection rule prohibiting the superposition of the particle and vacuum. In our approach the evolution of the system is given by a family of completely positive trace preserving maps forming one-parameter dynamical semigroup. We give the Kraus representation for the general evolution of such systems which allows one to write the evolution for systems with two or more particles. Moreover, we show that the decay of the particle can be regarded as a Markov process by finding explicitly the master equation in the Lindblad form. We also show that there are remarkable restrictions on the possible strength of decoherence.
We present a detailed non-perturbative analysis of the time-evolution of a well-known quantum-mechanical system - a particle between potential walls - describing the decay of unstable states. For sufficiently high barriers, corresponding to unstable
The underlying probabilistic theory for quantum mechanics is non-Kolmogorovian. The order in which physical observables will be important if they are incompatible (non-commuting). In particular, the notion of conditioning needs to be handled with car
Results presented in a recent paper Which is the Quantum Decay Law of Relativistic particles?, arXiv: 1412.3346v2 [quant--ph]], are analyzed. We show that approximations used therein to derive the main final formula for the survival probability of fi
I review recent applications of the open quantum system framework in the understanding of quarkonium suppression in heavy-ion collisions, which has been used as a probe of the quark-gluon plasma for decades. The derivation of the Lindblad equations f
We prove the quantum Zeno effect in open quantum systems whose evolution, governed by quantum dynamical semigroups, is repeatedly and frequently interrupted by the action of a quantum operation. For the case of a quantum dynamical semigroup with a bo