ﻻ يوجد ملخص باللغة العربية
Using Bell-inequalities as a tool to explore non-classical physical behaviours, in this paper we analyze what one can expect to find in many-body quantum physics. Concretely, framing the usual correlation scenarios as a concrete spin-lattice, we want to know whether or not it is possible to violate a Bell-inequality restricted to this scenario. Using clustering theorems, we are able to show that a large family of quantum many-body systems behave almost locally, violating Bell-inequalities (if so) only by a non-significant amount. We also provide examples, explain some of our assumptions via counter-examples and present all the proofs for our theorems. We hope the paper is self-contained.
While the interest in multipartite nonlocality has grown in recent years, its existence in large quantum systems is difficult to confirm experimentally. This is mostly due to the inadequacy of standard multipartite Bell inequalities to many-body syst
A recent experiment reported the first violation of a Bell correlation witness in a many-body system [Science 352, 441 (2016)]. Following discussions in this paper, we address here the question of the statistics required to witness Bell correlated st
We derive an exact lower bound to a universal measure of frustration in degenerate ground states of quantum many-body systems. The bound results in the sum of two contributions: entanglement and classical correlations arising from local measurements.
Bell inequalities define experimentally observable quantities to detect non-locality. In general, they involve correlation functions of all the parties. Unfortunately, these measurements are hard to implement for systems consisting of many constituen
We derive a version of the adiabatic theorem that is especially suited for applications in adiabatic quantum computation, where it is reasonable to assume that the adiabatic interpolation between the initial and final Hamiltonians is controllable. As