ترغب بنشر مسار تعليمي؟ اضغط هنا

Laser stabilization to an atomic transition using an optically generated dispersive lineshape

277   0   0.0 ( 0 )
 نشر من قبل Thierry Passerat de Silans
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on a simple and robust technique to generate a dispersive signal which serves as an error signal to electronically stabilize a monomode cw laser emitting around an atomic resonance. We explore nonlinear effects in the laser beam propagation through a resonant vapor by way of spatial filtering. The performance of this technique is validated by locking semiconductor lasers to the cesium and rubidiumD2 line and observing long-term reduction of the emission frequency drifts, making the laser well adapted for many atomic physics applications.



قيم البحث

اقرأ أيضاً

We present a novel and simple method of stabilizing the laser phase and frequency by polarization spectroscopy of an atomic vapor. In analogy to the Pound-Drever-Hall method, which uses a cavity as a memory of the laser phase, this method uses atomic coherence (dipole oscillations) as a phase memory of the transmitting laser field. A preliminary experiment using a distributed feedback laser diode and a rubidium vapor cell demonstrates a shot-noise-limited laser linewidth reduction (from 2 MHz to 20 kHz). This method would improve the performance of gas-cell-based optical atomic clocks and magnetometers and facilitate laser-cooling experiments using narrow transitions.
We present a laser system with a linewidth and long-term frequency stability at the 50 kHz level. It is based on a Ti:Sapphire laser emitting radiation at 882 nm which is referenced to an atomic transition. For this, the length of an evacuated transf er cavity is stabilized to a reference laser at 780 nm locked to the $^{85}$Rb D$_2$-line via modulation transfer spectroscopy. Gapless frequency tuning of the spectroscopy laser is realized using the sideband locking technique to the transfer cavity. In this configuration, the linewidth of the spectroscopy laser is derived from the transfer cavity, while the long-term stability is derived from the atomic resonance. Using an optical frequency comb, the frequency stability and linewidth of both lasers are characterized by comparison against an active hydrogen maser frequency standard and an ultra-narrow linewidth laser, respectively. The laser system presented here will be used for spectroscopy of the $1s^{2}2s^{2}2p ^{2}P_{1/2} - ^{2}P_{3/2}$ transition in sympathetically cooled Ar$^{13+}$ ions at 441nm after frequency doubling.
308 - A. Denning , A. Booth , S. Lee 2008
We present measurements of the velocity distribution of calcium atoms in an atomic beam generated using a dual-stage laser back-ablation apparatus. Distributions are measured using a velocity selective Doppler time-of-flight technique. They are Boltz mann-like with rms velocities corresponding to temperatures above the melting point for calcium. Contrary to a recent report in the literature, this method does not generate a sub-thermal atomic beam.
We present a laser frequency stabilization system that uses a transfer interferometer to stabilize slave lasers to a reference laser. Our implementation uses off-the-shelf optical components along with microcontroller-based digital feedback, and offe rs a simple, flexible and robust way to stabilize multiple laser frequencies to better than 1 MHz.
A proposal for cooling the translational motion of optically levitated magnetic nanoparticles is presented. The theoretical cooling scheme involves the sympathetic cooling of a ferromagnetic YIG nanosphere with a spin-polarized atomic gas. Particle-a tom cloud coupling is mediated through the magnetic dipole-dipole interaction. When the particle and atom oscillations are small compared to their separation, the interaction potential becomes dominantly linear which allows the particle to exchange energy with the $N$ atoms. While the atoms are continuously Doppler cooled, energy is able to be removed from the nanoparticles motion as it exchanges energy with the atoms. The rate at which energy is removed from the nanoparticles motion was studied for three species of atoms (Dy, Cr, Rb) by simulating the full $N+1$ equations of motion and was found to depend on system parameters with scalings that are consistent with a simplified model. The nanoparticles damping rate due to sympathetic cooling is competitive with and has the potential to exceed commonly employed cooling methods.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا