ﻻ يوجد ملخص باللغة العربية
We present a laser system with a linewidth and long-term frequency stability at the 50 kHz level. It is based on a Ti:Sapphire laser emitting radiation at 882 nm which is referenced to an atomic transition. For this, the length of an evacuated transfer cavity is stabilized to a reference laser at 780 nm locked to the $^{85}$Rb D$_2$-line via modulation transfer spectroscopy. Gapless frequency tuning of the spectroscopy laser is realized using the sideband locking technique to the transfer cavity. In this configuration, the linewidth of the spectroscopy laser is derived from the transfer cavity, while the long-term stability is derived from the atomic resonance. Using an optical frequency comb, the frequency stability and linewidth of both lasers are characterized by comparison against an active hydrogen maser frequency standard and an ultra-narrow linewidth laser, respectively. The laser system presented here will be used for spectroscopy of the $1s^{2}2s^{2}2p ^{2}P_{1/2} - ^{2}P_{3/2}$ transition in sympathetically cooled Ar$^{13+}$ ions at 441nm after frequency doubling.
Atomic layer graphene possesses wavelength-insensitive ultrafast saturable absorption, which can be exploited as a full-band mode locker. Taking advantage of the wide band saturable absorption of the graphene, we demonstrate experimentally that wide
We present and investigate different external cavity diode laser (ECDL) configurations for the manipulation of neutrals atoms, wavelength-stabilized by a narrow-band high transmission interference filter. A novel diode laser, providing high output po
We report on a simple and robust technique to generate a dispersive signal which serves as an error signal to electronically stabilize a monomode cw laser emitting around an atomic resonance. We explore nonlinear effects in the laser beam propagation
We describe the operation of two GaN-based diode lasers for the laser spectroscopy of gallium at 403 nm and 417 nm. Their use in an external cavity configuration enabled the investigation of absorption spectroscopy in a gallium hollow cathode. We hav
We stabilise a microwave oscillator at 9.6 GHz to an optical clock laser at 344 THz by using a fibre-based femtosecond laser frequency comb as a transfer oscillator. With a second frequency comb we measure independently the instability of the microwa