ﻻ يوجد ملخص باللغة العربية
We have investigated the ground state properties of solid $^4$He with the Shadow Path Integral Ground State method. This exact T=0 K projector method allows to describes quantum solids without introducing any a priori equilibrium position. We have found that the efficiency in computing off-diagonal properties in the solid phase sensibly improves when the direct sampling of permutations, in principle not required, is introduced. We have computed the exact one-body density matrix (obdm) in large commensurate 4He crystal finding a decreasing condensate fraction with increasing imaginary time of projection, making our result not conclusive on the presence of Bose-Einstein condensation in bulk solid 4He. We can only give an upper bound of 2.5 times 10^-8 on the condensate fraction. We have exploited the SPIGS method to study also 4He crystal containing grain boundaries by computing the related surface energy and the obdm along these defects. We have found that also highly symmetrical grain boundaries have a finite condensate fraction. We have also derived a route for the estimation of the true equilibrium concentration of vacancies x_v in bulk T=0 K solid 4He, which is shown to be finite, x_v=0.0014(1) at the melting density, when computed with the variational shadow wave function technique.
High order actions proposed by Chin have been used for the first time in path integral Monte Carlo simulations. Contrarily to the Takahashi-Imada action, which is accurate to fourth order only for the trace, the Chin action is fully fourth order, wit
We study the elasticity of perfect 4He at zero-temperature using the diffusion Monte Carlo method and a realistic semi-empirical pairwise potential to describe the He-He interactions. Specifically, we calculate the value of the elastic constants of h
Fractional derivatives are nonlocal differential operators of real order that often appear in models of anomalous diffusion and a variety of nonlocal phenomena. Recently, a version of the Schrodinger Equation containing a fractional Laplacian has bee
The changes that vacancies produce in the properties of hcp solid 4He are studied by means of quantum Monte Carlo methods. Our results show that the introduction of vacancies produces significant changes in the behavior of solid 4He, even when the va
Quantum Monte Carlo belongs to the most accurate simulation techniques for quantum many-particle systems. However, for fermions, these simulations are hampered by the sign problem that prohibits simulations in the regime of strong degeneracy. The sit