ﻻ يوجد ملخص باللغة العربية
We combine numerical optimization techniques [Uskov et al., Phys. Rev. A 79, 042326 (2009)] with symmetries of the Weyl chamber to obtain optimal implementations of generic linear-optical KLM-type two-qubit entangling gates. We find that while any two-qubit controlled-U gate, including CNOT and CS, can be implemented using only two ancilla resources with success probability S > 0.05, a generic SU(4) operation requires three unentangled ancilla photons, with success S > 0.0063. Specifically, we obtain a maximal success probability close to 0.0072 for the B gate. We show that single-shot implementation of a generic SU(4) gate offers more than an order of magnitude increase in the success probability and two-fold reduction in overhead ancilla resources compared to standard triple-CNOT and double-B gate decompositions.
We use the numerical optimization techniques of Uskov et al. [PRA 81, 012303 (2010)] to investigate the behavior of the success rates for KLM style [Nature 409, 46 (2001)] two- and three-qubit entangling gates. The methods are first demonstrated at p
Near-term quantum computers are limited by the decoherence of qubits to only being able to run low-depth quantum circuits with acceptable fidelity. This severely restricts what quantum algorithms can be compiled and implemented on such devices. One w
Here we propose an experiment in Linear Optical Quantum Computing (LOQC) using the framework first developed by Knill, Laflamme, and Milburn. This experiment will test the ideas of the authors previous work on imperfect LOQC gates using number-resolv
We consider the effects of plane-wave states scattering off finite graphs, as an approach to implementing single-qubit unitary operations within the continuous-time quantum walk framework of universal quantum computation. Four semi-infinite tails are
We propose a protocol to implement multi-qubit geometric gates (i.e., the M{o}lmer-S{o}rensen gate) using photonic cat qubits. These cat qubits stored in high-$Q$ resonators are promising for hardware-efficient universal quantum computing. Specifical