ﻻ يوجد ملخص باللغة العربية
We investigate tree-automatic well-founded trees. Using Delhommes decomposition technique for tree-automatic structures, we show that the (ordinal) rank of a tree-automatic well-founded tree is strictly below omega^omega. Moreover, we make a step towards proving that the ranks of tree-automatic well-founded partial orders are bounded by omega^omega^omega: we prove this bound for what we call upwards linear partial orders. As an application of our result, we show that the isomorphism problem for tree-automatic well-founded trees is complete for level Delta^0_{omega^omega} of the hyperarithmetical hierarchy with respect to Turing-reductions.
This paper studies tree-automatic ordinals (or equivalently, well-founded linearly ordered sets) together with the ordinal addition operation +. Informally, these are ordinals such that their elements are coded by finite trees for which the linear or
We consider extensive games with perfect information with well-founded game trees and study the problems of existence and of characterization of the sets of subgame perfect equilibria in these games. We also provide such characterizations for two cla
We address questions of logic and expressibility in the context of random rooted trees. Infiniteness of a rooted tree is not expressible as a first order sentence, but is expressible as an existential monadic second order sentence (EMSO). On the othe
We study density requirements on a given Banach space that guarantee the existence of subsymmetric basic sequences by extending Tsirelsons well-known space to larger index sets. We prove that for every cardinal $kappa$ smaller than the first Mahlo ca
Finiteness spaces constitute a categorical model of Linear Logic (LL) whose objects can be seen as linearly topologised spaces, (a class of topological vector spaces introduced by Lefschetz in 1942) and morphisms as continuous linear maps. First, we