ﻻ يوجد ملخص باللغة العربية
We study density requirements on a given Banach space that guarantee the existence of subsymmetric basic sequences by extending Tsirelsons well-known space to larger index sets. We prove that for every cardinal $kappa$ smaller than the first Mahlo cardinal there is a reflexive Banach space of density $kappa$ without subsymmetric basic sequences. As for Tsirelsons space, our construction is based on the existence of a rich collection of homogeneous families on large index sets for which one can estimate the complexity on any given infinite set. This is used to describe detailedly the asymptotic structure of the spaces. The collections of families are of independent interest and their existence is proved inductively. The fundamental stepping up argument is the analysis of such collections of families on trees.
We study the problem of the existence of unconditional basic sequences in Banach spaces of high density. We show, in particular, the relative consistency with GCH of the statement that every Banach space of density $aleph_omega$ contains an unconditional basic sequence.
We study the different horospherical Radon transforms that arise by regarding a homogeneous tree T as a simplicial complex whose simplices are vertices V, edges E or flags F (flags are oriented edges). The ends (infinite geodesic rays starting at a r
Let $X$ be a sequence space and denote by $Z(X)$ the subset of $X$ formed by sequences having only a finite number of zero coordinates. We study algebraic properties of $Z(X)$ and show (among other results) that (for $p in [1,infty]$) $Z(ell_p)$ does
We prove that, unless assuming additional set theoretical axioms, there are no reflexive space without unconditional sequences of density the continuum. We give for every integer $n$ there are normalized weakly-null sequences of length $om_n$ without
We show that every subsymmetric Schauder basis $(e_j)$ of a Banach space $X$ has the factorization property, i.e. $I_X$ factors through every bounded operator $Tcolon Xto X$ with a $delta$-large diagonal (that is $inf_j |langle Te_j, e_j^*rangle| geq