ﻻ يوجد ملخص باللغة العربية
Background: We study the sparsification of dynamic programming folding algorithms of RNA structures. Sparsification applies to the mfe-folding of RNA structures and can lead to a significant reduction of time complexity. Results: We analyze the sparsification of a particular decomposition rule, $Lambda^*$, that splits an interval for RNA secondary and pseudoknot structures of fixed topological genus. Essential for quantifying the sparsification is the size of its so called candidate set. We present a combinatorial framework which allows by means of probabilities of irreducible substructures to obtain the expected size of the set of $Lambda^*$-candidates. We compute these expectations for arc-based energy models via energy-filtered generating functions (GF) for RNA secondary structures as well as RNA pseudoknot structures. For RNA secondary structures we also consider a simplified loop-energy model. This combinatorial analysis is then compared to the expected number of $Lambda^*$-candidates obtained from folding mfe-structures. In case of the mfe-folding of RNA secondary structures with a simplified loop energy model our results imply that sparsification provides a reduction of time complexity by a constant factor of 91% (theory) versus a 96% reduction (experiment). For the full loop-energy model there is a reduction of 98% (experiment).
In this note, we give a closed formula for the partition function of the dimer model living on a (2 x n) strip of squares or hexagons on the torus for arbitrary even n. The result is derived in two ways, by using a Potts model like description for th
We give a brief overview of the life and combinatorics of Jeff Remmel, a mathematician with successful careers in both logic and combinatorics.
We give a geometric realization of the polyhedra governed by the structure of associative algebras with co-inner products, or more precisely, governed by directed planar trees. Our explicit realization of these polyhedra, which include the associahed
The finite colliding bullets problem is the following simple problem: consider a gun, whose barrel remains in a fixed direction; let $(V_i)_{1le ile n}$ be an i.i.d. family of random variables with uniform distribution on $[0,1]$; shoot $n$ bullets o
We consider the algebraic combinatorics of the set of injections from a $k$-element set to an $n$-element set. In particular, we give a new combinatorial formula for the spherical functions of the Gelfand pair $(S_k times S_n, text{diag}(S_k) times S