ﻻ يوجد ملخص باللغة العربية
We give a geometric realization of the polyhedra governed by the structure of associative algebras with co-inner products, or more precisely, governed by directed planar trees. Our explicit realization of these polyhedra, which include the associahedra in a special case, shows in particular that these polyhedra are homeomorphic to balls. We also calculate the number of vertices of the lowest generalized associahedra, giving appropriate generalizations of the Catalan numbers.
In 2001, Komlos, Sarkozy and Szemeredi proved that, for each $alpha>0$, there is some $c>0$ and $n_0$ such that, if $ngeq n_0$, then every $n$-vertex graph with minimum degree at least $(1/2+alpha)n$ contains a copy of every $n$-vertex tree with maxi
These notes are a written version of my talk given at the CARMA workshop in June 2017, with some additional material. I presented a few concepts that have recently been used in the computation of tree-level scattering amplitudes (mostly using pure sp
Let $G$ be a finitely generated group acting faithfully and properly discontinuously by homeomorphisms on a planar surface $X subseteq mathbb{S}^2$. We prove that $G$ admits such an action that is in addition co-compact, provided we can replace $X$ b
Background: We study the sparsification of dynamic programming folding algorithms of RNA structures. Sparsification applies to the mfe-folding of RNA structures and can lead to a significant reduction of time complexity. Results: We analyze the spars
We give a brief overview of the life and combinatorics of Jeff Remmel, a mathematician with successful careers in both logic and combinatorics.