ترغب بنشر مسار تعليمي؟ اضغط هنا

Combinatorics of the Dimer Model on a Strip

252   0   0.0 ( 0 )
 نشر من قبل Domenico Orlando
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this note, we give a closed formula for the partition function of the dimer model living on a (2 x n) strip of squares or hexagons on the torus for arbitrary even n. The result is derived in two ways, by using a Potts model like description for the dimers, and via a recursion relation that was obtained from a map to a 1D monomer-dimer system. The problem of finding the number of perfect matchings can also be translated to the problem of finding a minmal feedback arc set on the dual graph.



قيم البحث

اقرأ أيضاً

The dimer model on a strip is considered as a Yang-Baxter mbox{integrable} six vertex model at the free-fermion point with crossing parameter $lambda=tfrac{pi}{2}$ and quantum group invariant boundary conditions. A one-to-many mapping of vertex onto dimer configurations allows for the solution of the free-fermion model to be applied to the anisotropic dimer model on a square lattice where the dimers are rotated by $45degree$ compared to their usual orientation. In a suitable gauge, the dimer model is described by the Temperley-Lieb algebra with loop fugacity $beta=2coslambda=0$. It follows that the model is exactly solvable in geometries of arbitrary finite size. We establish and solve transfer matrix inversion identities on the strip with arbitrary finite width $N$. In the continuum scaling limit, in sectors with magnetization $S_z$, we obtain the conformal weights $Delta_{s}=big((2-s)^2-1big)/8$ where $s=|S_z|+1=1,2,3,ldots$. We further show that the corresponding finitized characters $chit_s^{(N)}(q)$ decompose into sums of $q$-Narayana numbers or, equivalently, skew $q$-binomials. In the particle representation, the local face tile operators give a representation of the fermion algebra and the fermion particle trajectories play the role of nonlocal degrees of freedom. We argue that, in the continuum scaling limit, there exist nontrivial Jordan blocks of rank 2 in the Virasoro dilatation operator $L_0$. This confirms that, with quantum group invariant boundary conditions, the dimer model gives rise to a {em logarithmic} conformal field theory with central charge $c=-2$, minimal conformal weight $Delta_{text{min}}=-frac{1}{8}$ and effective central charge $c_{text{eff}}=1$.Our analysis of the structure of the ensuing rank 2 modules indicates that the familiar staggered $c=-2$ modules appear as submodules.
54 - M.T. Batchelor 2002
We examine the groundstate wavefunction of the rotor model for different boundary conditions. Three conjectures are made on the appearance of numbers enumerating alternating sign matrices. In addition to those occurring in the O($n=1$) model we find the number $A_{rm V}(2m+1;3)$, which 3-enumerates vertically symmetric alternating sign matrices.
Background: We study the sparsification of dynamic programming folding algorithms of RNA structures. Sparsification applies to the mfe-folding of RNA structures and can lead to a significant reduction of time complexity. Results: We analyze the spars ification of a particular decomposition rule, $Lambda^*$, that splits an interval for RNA secondary and pseudoknot structures of fixed topological genus. Essential for quantifying the sparsification is the size of its so called candidate set. We present a combinatorial framework which allows by means of probabilities of irreducible substructures to obtain the expected size of the set of $Lambda^*$-candidates. We compute these expectations for arc-based energy models via energy-filtered generating functions (GF) for RNA secondary structures as well as RNA pseudoknot structures. For RNA secondary structures we also consider a simplified loop-energy model. This combinatorial analysis is then compared to the expected number of $Lambda^*$-candidates obtained from folding mfe-structures. In case of the mfe-folding of RNA secondary structures with a simplified loop energy model our results imply that sparsification provides a reduction of time complexity by a constant factor of 91% (theory) versus a 96% reduction (experiment). For the full loop-energy model there is a reduction of 98% (experiment).
We consider the $(2+1)$-d $SU(2)$ quantum link model on the honeycomb lattice and show that it is equivalent to a quantum dimer model on the Kagome lattice. The model has crystalline confined phases with spontaneously broken translation invariance as sociated with pinwheel order, which is investigated with either a Metropolis or an efficient cluster algorithm. External half-integer non-Abelian charges (which transform non-trivially under the $mathbb{Z}(2)$ center of the $SU(2)$ gauge group) are confined to each other by fractionalized strings with a delocalized $mathbb{Z}(2)$ flux. The strands of the fractionalized flux strings are domain walls that separate distinct pinwheel phases. A second-order phase transition in the 3-d Ising universality class separates two confining phases; one with correlated pinwheel orientations, and the other with uncorrelated pinwheel orientations.
Here we observe that list coloring in graph theory coincides with the zero-temperature antiferromagnetic Potts model with an external field. We give a list coloring polynomial that equals the partition function in this case. This is analogous to the well-known connection between the chromatic polynomial and the zero-temperature, zero-field, antiferromagnetic Potts model. The subsequent cross fertilization yields immediate results for the Potts model and suggests new research directions in list coloring.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا